Data Engineer

Booker
1 day ago
Create job alert

Data Engineer
Term: Full-time, Permanent
Location: High Wycombe with hybrid remote working available
Salary: £50000 - £65000 pa depending on experience + excellent benefits
Focusrite are looking for an experienced data engineer to join our business intelligence team. You'll help us build and maintain a robust yet flexible data stack, delivering high quality information where it's needed (and keeping it secure where it's not!).
We make extensive use of SQL, dbt, Snowflake and Power BI, as well as various other tools. We work closely together using pair programming, peer review and DevOps practices. We relish the chance to learn new things, independently and from each other.
We are looking for someone who:

  • Is an SQL expert, able to quickly identify data issues with a pithy query.
  • Has opinions about permissions, schemas, APIs and models, and can share them collaboratively.
  • Knows how to structure, profile and monitor a data warehouse, and what to watch out for.
  • Is familiar with visualising data and delivery tools such as Power BI.
  • Has an interest in analysis and modelling as well as infrastructure.
    You don't mind doing the mundane stuff, because you set everything up to make the mundane stuff, well, mundane (and therefore easy and low risk). That leaves time build new data marts for our stakeholders, identify data pipelines to be improved and be a stickler for adhering to privacy regulations.
    Do you:
  • Have a knack for extracting requirements from big picture stakeholders?
  • Know who Inmon and Kimball are?
  • Have a background in economics, statistics or computing?
  • Enjoy helping people get the most from data?
  • Go on occasional nerdy tangents?
    If so, and if you've built a data stack that your colleagues trusted and depended on, we'd love to hear from you!
    About Us
    Focusrite plc is a global music and audio group that develops and markets music technology products. Used by audio professionals and amateur musicians alike, its solutions facilitate the high-quality production of recorded and live sound. Our audio technology brands stand together, seeking to enrich lives through music by removing barriers to creativity - ‘we make music easy to make'.
    The Focusrite Group trades under nine established and rapidly growing brands: Focusrite, Focusrite Pro, Novation, ADAM Audio, Sequential, Martin Audio, Optimal Audio, Linea Research and Ampify Music. With a high-quality reputation and a rich heritage spanning decades, its brands are category leaders in the music-making industry.
    Music technology is an enriching space to work in and we enjoy a Group-wide open-door culture which encourages innovation. This culture, combined with a passion for the inspirational solutions we create, has led to the group winning numerous accolades, including three Queen's Awards for Enterprise and the AIM Company of the Year Award 2021.
    The Focusrite Group is dedicated to building a great place to work and as an equal opportunity employer we are committed to Diversity and Inclusion. The group mission is to cultivate an equitable culture, internally and externally, where all people feel they are welcome and positively represented, whether office-based or working remotely. Equally, we recognise the major impact that climate change is having on our world and work every day towards being industry leaders in a carbon neutral future.
    Benefits include flexible/hybrid working, company pension, life insurance, private healthcare, employee purchase scheme, company music events, free breakfast/lunch in the canteen at Focusrite HQ. We arrange company training sessions and encourage personal development

Related Jobs

View all jobs

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Negotiating Your Machine Learning Job Offer: Equity, Bonuses & Perks Explained

How to Secure a Compensation Package That Matches Your Technical Mastery and Strategic Influence in the UK’s ML Landscape Machine learning (ML) has rapidly shifted from an emerging discipline to a mission-critical function in modern enterprises. From optimising e-commerce recommendations to powering autonomous vehicles and driving innovation in healthcare, ML experts hold the keys to transformative outcomes. As a mid‑senior professional in this field, you’re not only crafting sophisticated algorithms; you’re often guiding strategic decisions about data pipelines, model deployment, and product direction. With such a powerful impact on business results, companies across the UK are going beyond standard salary structures to attract top ML talent. Negotiating a compensation package that truly reflects your value means looking beyond the numbers on your monthly payslip. In addition to a competitive base salary, you could be securing equity, performance-based bonuses, and perks that support your ongoing research, development, and growth. However, many mid‑senior ML professionals leave these additional benefits on the table—either because they’re unsure how to negotiate them or they simply underestimate their long-term worth. This guide explores every critical aspect of negotiating a machine learning job offer. Whether you’re joining an AI-focused start-up or a major tech player expanding its ML capabilities, understanding equity structures, bonus schemes, and strategic perks will help you lock in a package that matches your technical expertise and strategic influence. Let’s dive in.

Machine Learning Jobs in the Public Sector: Opportunities Across GDS, NHS, MOD, and More

Machine learning (ML) has rapidly moved from academic research labs to the heart of industrial and governmental operations. Its ability to uncover patterns, predict outcomes, and automate complex tasks has revolutionised industries ranging from finance to retail. Now, the public sector—encompassing government departments, healthcare systems, and defence agencies—has become an increasingly fertile ground for machine learning jobs. Why? Because government bodies oversee vast datasets, manage critical services for millions of citizens, and must operate efficiently under tight resource constraints. From using ML algorithms to improve patient outcomes in the NHS, to enhancing cybersecurity within the Ministry of Defence (MOD), there’s a growing demand for skilled ML professionals in UK public sector roles. If you’re passionate about harnessing data-driven insights to solve large-scale problems and contribute to societal well-being, machine learning jobs in the public sector offer an unparalleled blend of challenge and impact. In this article, we’ll explore the key reasons behind the public sector’s investment in ML, highlight the leading organisations, outline common job roles, and provide practical guidance on securing a machine learning position that helps shape the future of government services.

Contract vs Permanent Machine Learning Jobs: Which Pays Better in 2025?

Machine learning (ML) has swiftly become one of the most transformative forces in the UK technology landscape. From conversational AI and autonomous vehicles to fraud detection and personalised recommendations, ML algorithms are reshaping how organisations operate and how consumers experience products and services. In response, job opportunities in machine learning—including roles in data science, MLOps, natural language processing (NLP), computer vision, and more—have risen dramatically. Yet, as the demand for ML expertise booms, professionals face a pivotal choice about how they want to work. Some choose day‑rate contracting, leveraging short-term projects for potentially higher immediate pay. Others embrace fixed-term contract (FTC) roles for mid-range stability, or permanent positions for comprehensive benefits and a well-defined career path. In this article, we will explore these different employment models, highlighting the pros and cons of each, offering sample take‑home pay scenarios, and providing insights into which path might pay better in 2025. Whether you’re a new graduate with a machine learning degree or an experienced practitioner pivoting into an ML-heavy role, understanding these options is key to making informed career decisions.