Data Engineer

Oxford
9 months ago
Applications closed

Related Jobs

View all jobs

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Transform Healthcare with Cutting-Edge Tech! 🚀

Position: Data Engineer (Python/Databricks) Location: Remote Salary: Up to ÂŁ80,000 + Benefits

Are you driven by a passion for health tech and innovation? Do you dream of revolutionizing clinical research through advanced technology? If so, we have an incredible opportunity for you!

Join our trailblazing team as a Data Engineer and play a pivotal role in building secure, scalable microservices that power clinical research applications. This is your chance to make a significant impact on healthcare while working with the latest advancements in data engineering.

About Us

We are a pioneering health tech company committed to transforming clinical research through innovative data solutions. Our collaborative team, which includes Frontend Developers, QA Engineers, and DevOps Engineers, creates high-performance data pipelines and REST APIs that drive AI applications and external data integrations.

Your Role

As a Data Engineer, you will:

Build and Optimize Data Pipelines: Implement high-performance data pipelines for AI applications using Databricks.
Develop REST APIs: Create seamless REST APIs for external data integrations.
Ensure Data Security: Apply protocols and standards to secure clinical data both in-motion and at-rest.
Shape Data Workflows: Utilize Databricks components like Delta Lake, Unity Catalog, and ML Flow to ensure efficient, secure, and reliable data workflows.Key Responsibilities

Data Engineering with Databricks: Design and maintain scalable data infrastructure using Databricks.
Integration with Azure Data Factory: Orchestrate and automate data movement and transformation with Azure Data Factory.
Python Development: Write clean, efficient code in Python (3.x), using frameworks like FastAPI and Pydantic.
Database Management: Design and manage relational schemas and databases, focusing on SQL and PostgreSQL.
CI/CD and Containerization: Implement CI/CD pipelines and manage container technologies for a robust development environment.
Data Modeling and ETL/ELT Processes: Develop and optimize data models, ETL/ELT processes, and data lakes to support data analytics and machine learning.Requirements

Expertise in Databricks: Proficiency with Databricks components such as Delta Lake, Unity Catalog, and ML Flow.
Azure Data Factory Knowledge: Experience with Azure Data Factory for data orchestration.
Clinical Data Security: Understanding of protocols and standards for securing clinical data.
Python Proficiency: Strong skills in Python (3.x), FastAPI, Pydantic, and Pytest.
SQL and Relational Databases: Knowledge of SQL, relational schema design, and PostgreSQL.
CI/CD and Containers: Familiarity with CI/CD practices and container technologies.
Data Modeling and ETL/ELT: Experience with data modeling, ETL/ELT processes, and data lakes.Why Join Us?

Innovative Environment: Be part of a team pushing the boundaries of health tech and clinical research.
Career Growth: Enjoy opportunities for professional development and career advancement.
Cutting-Edge Technology: Work with the latest tools and platforms in data engineering.
Impactful Work: Contribute to projects that make a real-world impact on healthcare and clinical research.If you are a versatile Data Engineer with a passion for health tech and innovation, we would love to hear from you. This is a unique opportunity to shape the future of clinical research with your expertise in data engineering.

🔬 Shape the Future of Health Tech with Us! Apply Today! 🔬

To find out more about Computer Futures please visit

Computer Futures, a trading division of SThree Partnership LLP is acting as an Employment Business in relation to this vacancy | Registered office | 8 Bishopsgate, London, EC2N 4BQ, United Kingdom | Partnership Number | OC(phone number removed) England and Wales

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

What Hiring Managers Look for First in Machine Learning Job Applications (UK Guide)

Whether you’re applying for machine learning engineer, applied scientist, research scientist, ML Ops or data scientist roles, hiring managers scan applications quickly — often making decisions before they’ve read beyond the top third of your CV. In the competitive UK market, it’s not enough to list skills. You must send clear signals of relevance, delivery, impact, reasoning and readiness for production — and do it within the first few lines of your CV or portfolio. This guide walks you through exactly what hiring managers look for first in machine learning applications, how they evaluate CVs and portfolios, and what you can do to improve your chances of getting shortlisted at every stage — from your CV and LinkedIn profile to your cover letter and project portfolio.

MLOps Jobs in the UK: The Complete Career Guide for Machine Learning Professionals

Machine learning has moved from experimentation to production at scale. As a result, MLOps jobs have become some of the most in-demand and best-paid roles in the UK tech market. For job seekers with experience in machine learning, data science, software engineering or cloud infrastructure, MLOps represents a powerful career pivot or progression. This guide is designed to help you understand what MLOps roles involve, which skills employers are hiring for, how to transition into MLOps, salary expectations in the UK, and how to land your next role using specialist platforms like MachineLearningJobs.co.uk.

The Skills Gap in Machine Learning Jobs: What Universities Aren’t Teaching

Machine learning has moved from academic research into the core of modern business. From recommendation engines and fraud detection to medical imaging, autonomous systems and language models, machine learning now underpins many of the UK’s most critical technologies. Universities have responded quickly. Machine learning modules are now standard in computer science degrees, specialist MSc programmes have proliferated, and online courses promise to fast-track careers in the field. And yet, despite this growth in education, UK employers consistently report the same problem: Many candidates with machine learning qualifications are not job-ready. Roles remain open for months. Interview processes filter out large numbers of applicants. Graduates with strong theoretical knowledge struggle when faced with practical tasks. The issue is not intelligence or effort. It is a persistent skills gap between university-level machine learning education and real-world machine learning jobs. This article explores that gap in depth: what universities teach well, what they routinely miss, why the gap exists, what employers actually want, and how jobseekers can bridge the divide to build successful careers in machine learning.