Data Engineer

Oxford
1 week ago
Create job alert

Transform Healthcare with Cutting-Edge Tech! 🚀

Position: Data Engineer (Python/Databricks) Location: Remote Salary: Up to ÂŁ80,000 + Benefits

Are you driven by a passion for health tech and innovation? Do you dream of revolutionizing clinical research through advanced technology? If so, we have an incredible opportunity for you!

Join our trailblazing team as a Data Engineer and play a pivotal role in building secure, scalable microservices that power clinical research applications. This is your chance to make a significant impact on healthcare while working with the latest advancements in data engineering.

About Us

We are a pioneering health tech company committed to transforming clinical research through innovative data solutions. Our collaborative team, which includes Frontend Developers, QA Engineers, and DevOps Engineers, creates high-performance data pipelines and REST APIs that drive AI applications and external data integrations.

Your Role

As a Data Engineer, you will:

Build and Optimize Data Pipelines: Implement high-performance data pipelines for AI applications using Databricks.
Develop REST APIs: Create seamless REST APIs for external data integrations.
Ensure Data Security: Apply protocols and standards to secure clinical data both in-motion and at-rest.
Shape Data Workflows: Utilize Databricks components like Delta Lake, Unity Catalog, and ML Flow to ensure efficient, secure, and reliable data workflows.Key Responsibilities

Data Engineering with Databricks: Design and maintain scalable data infrastructure using Databricks.
Integration with Azure Data Factory: Orchestrate and automate data movement and transformation with Azure Data Factory.
Python Development: Write clean, efficient code in Python (3.x), using frameworks like FastAPI and Pydantic.
Database Management: Design and manage relational schemas and databases, focusing on SQL and PostgreSQL.
CI/CD and Containerization: Implement CI/CD pipelines and manage container technologies for a robust development environment.
Data Modeling and ETL/ELT Processes: Develop and optimize data models, ETL/ELT processes, and data lakes to support data analytics and machine learning.Requirements

Expertise in Databricks: Proficiency with Databricks components such as Delta Lake, Unity Catalog, and ML Flow.
Azure Data Factory Knowledge: Experience with Azure Data Factory for data orchestration.
Clinical Data Security: Understanding of protocols and standards for securing clinical data.
Python Proficiency: Strong skills in Python (3.x), FastAPI, Pydantic, and Pytest.
SQL and Relational Databases: Knowledge of SQL, relational schema design, and PostgreSQL.
CI/CD and Containers: Familiarity with CI/CD practices and container technologies.
Data Modeling and ETL/ELT: Experience with data modeling, ETL/ELT processes, and data lakes.Why Join Us?

Innovative Environment: Be part of a team pushing the boundaries of health tech and clinical research.
Career Growth: Enjoy opportunities for professional development and career advancement.
Cutting-Edge Technology: Work with the latest tools and platforms in data engineering.
Impactful Work: Contribute to projects that make a real-world impact on healthcare and clinical research.If you are a versatile Data Engineer with a passion for health tech and innovation, we would love to hear from you. This is a unique opportunity to shape the future of clinical research with your expertise in data engineering.

🔬 Shape the Future of Health Tech with Us! Apply Today! 🔬

To find out more about Computer Futures please visit

Computer Futures, a trading division of SThree Partnership LLP is acting as an Employment Business in relation to this vacancy | Registered office | 8 Bishopsgate, London, EC2N 4BQ, United Kingdom | Partnership Number | OC(phone number removed) England and Wales

Related Jobs

View all jobs

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Portfolio Projects That Get You Hired for Machine Learning Jobs (With Real GitHub Examples)

In today’s data-driven landscape, the field of machine learning (ML) is one of the most sought-after career paths. From startups to multinational enterprises, organisations are on the lookout for professionals who can develop and deploy ML models that drive impactful decisions. Whether you’re an aspiring data scientist, a seasoned researcher, or a machine learning engineer, one element can truly make your CV shine: a compelling portfolio. While your CV and cover letter detail your educational background and professional experiences, a portfolio reveals your practical know-how. The code you share, the projects you build, and your problem-solving process all help prospective employers ascertain if you’re the right fit for their team. But what kinds of portfolio projects stand out, and how can you showcase them effectively? This article provides the answers. We’ll look at: Why a machine learning portfolio is critical for impressing recruiters. How to select appropriate ML projects for your target roles. Inspirational GitHub examples that exemplify strong project structure and presentation. Tangible project ideas you can start immediately, from predictive modelling to computer vision. Best practices for showcasing your work on GitHub, personal websites, and beyond. Finally, we’ll share how you can leverage these projects to unlock opportunities—plus a handy link to upload your CV on Machine Learning Jobs when you’re ready to apply. Get ready to build a portfolio that underscores your skill set and positions you for the ML role you’ve been dreaming of!

Machine Learning Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

Machine learning is fuelling innovation across every industry, from healthcare to retail to financial services. As organisations look to harness large datasets and predictive algorithms to gain competitive advantages, the demand for skilled ML professionals continues to soar. Whether you’re aiming for a machine learning engineer role or a research scientist position, strong interview performance can open doors to dynamic projects and fulfilling careers. However, machine learning interviews differ from standard software engineering ones. Beyond coding proficiency, you’ll be tested on algorithms, mathematics, data manipulation, and applied problem-solving skills. Employers also expect you to discuss how to deploy models in production and maintain them effectively—touching on MLOps or advanced system design for scaling model inferences. In this guide, we’ve compiled 30 real coding & system‑design questions you might face in a machine learning job interview. From linear regression to distributed training strategies, these questions aim to test your depth of knowledge and practical know‑how. And if you’re ready to find your next ML opportunity in the UK, head to www.machinelearningjobs.co.uk—a prime location for the latest machine learning vacancies. Let’s dive in and gear up for success in your forthcoming interviews.

Negotiating Your Machine Learning Job Offer: Equity, Bonuses & Perks Explained

How to Secure a Compensation Package That Matches Your Technical Mastery and Strategic Influence in the UK’s ML Landscape Machine learning (ML) has rapidly shifted from an emerging discipline to a mission-critical function in modern enterprises. From optimising e-commerce recommendations to powering autonomous vehicles and driving innovation in healthcare, ML experts hold the keys to transformative outcomes. As a mid‑senior professional in this field, you’re not only crafting sophisticated algorithms; you’re often guiding strategic decisions about data pipelines, model deployment, and product direction. With such a powerful impact on business results, companies across the UK are going beyond standard salary structures to attract top ML talent. Negotiating a compensation package that truly reflects your value means looking beyond the numbers on your monthly payslip. In addition to a competitive base salary, you could be securing equity, performance-based bonuses, and perks that support your ongoing research, development, and growth. However, many mid‑senior ML professionals leave these additional benefits on the table—either because they’re unsure how to negotiate them or they simply underestimate their long-term worth. This guide explores every critical aspect of negotiating a machine learning job offer. Whether you’re joining an AI-focused start-up or a major tech player expanding its ML capabilities, understanding equity structures, bonus schemes, and strategic perks will help you lock in a package that matches your technical expertise and strategic influence. Let’s dive in.