Data Architect

Springer Nature
London
10 months ago
Applications closed

Related Jobs

View all jobs

Data Engineering Director

Data Engineering Director

Lead Data Engineer / Architect – Databricks Active - SC Cleared

Senior Data Engineer & ETL Architect (Hybrid)

Data Engineer

Data Engineer – Databricks Specialist (SC Cleared)

This role will develop a cohesive data architecture in a key area across Springer Nature’s research brands, transforming services and products towards a data-driven customer experience.

About you

You bring people together, getting the right artefact in front of the right people to shift the conversation towards agreement and understanding. You learn quickly, taking in the full context and complexity to work out what can and can’t be safely set aside for now. You communicate well and ensure stakeholders understand your architectural vision and its relationship to the business capabilities it will enable. You architect with an iterative approach, actively seeking input from multiple points, gathering feedback and adapting to new requirements and information.

Role Responsibilities

  • Collaborate with business stakeholders, technology teams, and data professionals to define and align on a target data architecture that supports strategic goals.

  • Drive the development and maintenance of data architecture guidelines and standards to ensure consistency across the organization, including digital products and marketing domains.

  • Provide guidance and mentorship to department representatives to promote improved data quality, harmonization, and governance practices.

  • Introduce and explain data concepts to senior business and product leaders to foster data literacy and informed decision-making.

  • Develop and maintain data models and artifacts to document the as-is and to-be states of the customer data landscape.

  • Identify and define desired data products that meet the research organization's needs, ensuring alignment with business requirements.

  • Collaborate with teams and solution architects to contribute to the development of the broader data ecosystem, including capabilities like data disambiguation, APIs, and machine learning models.

  • Continually validate architecture through delivery with product teams and course correct as necessary.

  • Collaborate with data privacy, governance, and management roles to establish and enforce data management, security, and compliance policies within areas of active development, ensuring adherence to relevant regulations (e.g., GDPR).

  • Build and maintain strong relationships with key stakeholders, including Solution Architects, Data Governance, Data Directors, Heads of Product, Data Protection Officer (DPO), Enterprise Architects, and Cybersecurity, to ensure the delivery of reliable, right, and secure data solutions.

  • Collaborate with other data architects in workshops, planning sessions, and product teams to create shared artifacts, fostering a collaborative and consistent approach to data architecture.

Skills & Experience Essential

  • Extensive experience in data modeling, with a proven track record of successfully modeling complex data domains.

  • Demonstrated experience in defining and documenting data strategies, roadmaps, and principles.

  • Strong understanding of data governance principles and practices, with experience driving improvements in data quality and harmonization.

  • Experience in defining and documenting non-functional requirements (e.g., data management, security, compliance) and ensuring their implementation.

  • Ability to review proposed technology options for architectural fit and define appropriate frameworks for technology selection.

  • Experience defining success measures and monitoring key data components to ensure performance and reliability.

  • Excellent communication and interpersonal skills, with the ability to effectively clarify constraints, trade-offs, and essential decisions to technical and non-technical stakeholders.

  • Proven ability to develop strategies to improve data quality and ensure data accuracy and consistency.

  • Experience creating regular feedback loops with stakeholders and product teams to ensure alignment and incorporate learnings into the data architecture.

Desirable

  • Knowledge of architectural disciplines such as data mesh, business intelligence (BI), data warehousing, and data platforms.

  • Experience with cloud-based data solutions and technologies.

  • Strong facilitation and alignment skills, with the ability to effectively navigate and influence across organizational silos.

  • Experience with aligning Agile delivery teams.

What you will be doing

1 month

  • Collaborate with key stakeholders to understand the research data landscape's current state and identify immediate improvement opportunities.

  • Document the as-is data/technical landscape for research data and the broader domain.

  • Build relationships and feedback loops with data governance, security, and other relevant groups to ensure alignment on data standards, security policies, and architectural principles.

  • Start to map out the existing data sources and identify potential issues that must be addressed.

3 months

  • Maintain a high-level roadmap for the development of the research data ecosystem, outlining key milestones and deliverables for the next 6-12 months, and presenting to senior leadership.

  • Determine how the technical architecture can support delivery autonomy while supporting consistent user journeys across our platforms.

  • Perform feasibility analysis and provide recommendations on Build vs. Buy for systems that support the agile development process, scalability, and data governance requirements.

  • Create an architectural forum to bring together architects and tech leads in the research data initiatives.

6 months

  • Refine the roadmap and architecture based on feedback from initial delivery, incorporating lessons learned and adjusting priorities as needed.

  • Scale the successful approaches to other areas of the research data ecosystem, empowering teams.

  • Develop and communicate a clear vision for the future of the research data ecosystem, highlighting its role in supporting strategic organizational goals.

#LI-AR1

#J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Write a Machine Learning Job Ad That Attracts the Right People

Machine learning now sits at the heart of many UK organisations, powering everything from recommendation engines and fraud detection to forecasting, automation and decision support. As adoption grows, so does demand for skilled machine learning professionals. Yet many employers struggle to attract the right candidates. Machine learning job adverts often generate high volumes of applications, but few applicants have the blend of modelling skill, engineering awareness and real-world experience the role actually requires. Meanwhile, strong machine learning engineers and scientists quietly avoid adverts that feel vague, inflated or confused. In most cases, the issue is not the talent market — it is the job advert itself. Machine learning professionals are analytical, technically rigorous and highly selective. A poorly written job ad signals unclear expectations and low ML maturity. A well-written one signals credibility, focus and a serious approach to applied machine learning. This guide explains how to write a machine learning job ad that attracts the right people, improves applicant quality and strengthens your employer brand.

Maths for Machine Learning Jobs: The Only Topics You Actually Need (& How to Learn Them)

Machine learning job adverts in the UK love vague phrases like “strong maths” or “solid fundamentals”. That can make the whole field feel gatekept especially if you are a career changer or a student who has not touched maths since A level. Here is the practical truth. For most roles on MachineLearningJobs.co.uk such as Machine Learning Engineer, Applied Scientist, Data Scientist, NLP Engineer, Computer Vision Engineer or MLOps Engineer with modelling responsibilities the maths you actually use is concentrated in four areas: Linear algebra essentials (vectors, matrices, projections, PCA intuition) Probability & statistics (uncertainty, metrics, sampling, base rates) Calculus essentials (derivatives, chain rule, gradients, backprop intuition) Basic optimisation (loss functions, gradient descent, regularisation, tuning) If you can do those four things well you can build models, debug training, evaluate properly, explain trade-offs & sound credible in interviews. This guide gives you a clear scope plus a six-week learning plan, portfolio projects & resources so you can learn with momentum rather than drowning in theory.

Neurodiversity in Machine Learning Careers: Turning Different Thinking into a Superpower

Machine learning is about more than just models & metrics. It’s about spotting patterns others miss, asking better questions, challenging assumptions & building systems that work reliably in the real world. That makes it a natural home for many neurodivergent people. If you live with ADHD, autism or dyslexia, you may have been told your brain is “too distracted”, “too literal” or “too disorganised” for a technical career. In reality, many of the traits that can make school or traditional offices hard are exactly the traits that make for excellent ML engineers, applied scientists & MLOps specialists. This guide is written for neurodivergent ML job seekers in the UK. We’ll explore: What neurodiversity means in a machine learning context How ADHD, autism & dyslexia strengths map to ML roles Practical workplace adjustments you can ask for under UK law How to talk about neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in ML – & how to turn “different thinking” into a genuine career advantage.