Data Architect

Springer Nature
London
2 months ago
Applications closed

Related Jobs

View all jobs

Data Architect

Data Architect

Senior Data Architect - Databricks

Data Engineering Lead / Data Architect

Data & AI Solution Architect, Azure, Remote

Microsoft Data Solution Architect

This role will develop a cohesive data architecture in a key area across Springer Nature’s research brands, transforming services and products towards a data-driven customer experience.

About you

You bring people together, getting the right artefact in front of the right people to shift the conversation towards agreement and understanding. You learn quickly, taking in the full context and complexity to work out what can and can’t be safely set aside for now. You communicate well and ensure stakeholders understand your architectural vision and its relationship to the business capabilities it will enable. You architect with an iterative approach, actively seeking input from multiple points, gathering feedback and adapting to new requirements and information.

Role Responsibilities

  • Collaborate with business stakeholders, technology teams, and data professionals to define and align on a target data architecture that supports strategic goals.

  • Drive the development and maintenance of data architecture guidelines and standards to ensure consistency across the organization, including digital products and marketing domains.

  • Provide guidance and mentorship to department representatives to promote improved data quality, harmonization, and governance practices.

  • Introduce and explain data concepts to senior business and product leaders to foster data literacy and informed decision-making.

  • Develop and maintain data models and artifacts to document the as-is and to-be states of the customer data landscape.

  • Identify and define desired data products that meet the research organization's needs, ensuring alignment with business requirements.

  • Collaborate with teams and solution architects to contribute to the development of the broader data ecosystem, including capabilities like data disambiguation, APIs, and machine learning models.

  • Continually validate architecture through delivery with product teams and course correct as necessary.

  • Collaborate with data privacy, governance, and management roles to establish and enforce data management, security, and compliance policies within areas of active development, ensuring adherence to relevant regulations (e.g., GDPR).

  • Build and maintain strong relationships with key stakeholders, including Solution Architects, Data Governance, Data Directors, Heads of Product, Data Protection Officer (DPO), Enterprise Architects, and Cybersecurity, to ensure the delivery of reliable, right, and secure data solutions.

  • Collaborate with other data architects in workshops, planning sessions, and product teams to create shared artifacts, fostering a collaborative and consistent approach to data architecture.

Skills & Experience Essential

  • Extensive experience in data modeling, with a proven track record of successfully modeling complex data domains.

  • Demonstrated experience in defining and documenting data strategies, roadmaps, and principles.

  • Strong understanding of data governance principles and practices, with experience driving improvements in data quality and harmonization.

  • Experience in defining and documenting non-functional requirements (e.g., data management, security, compliance) and ensuring their implementation.

  • Ability to review proposed technology options for architectural fit and define appropriate frameworks for technology selection.

  • Experience defining success measures and monitoring key data components to ensure performance and reliability.

  • Excellent communication and interpersonal skills, with the ability to effectively clarify constraints, trade-offs, and essential decisions to technical and non-technical stakeholders.

  • Proven ability to develop strategies to improve data quality and ensure data accuracy and consistency.

  • Experience creating regular feedback loops with stakeholders and product teams to ensure alignment and incorporate learnings into the data architecture.

Desirable

  • Knowledge of architectural disciplines such as data mesh, business intelligence (BI), data warehousing, and data platforms.

  • Experience with cloud-based data solutions and technologies.

  • Strong facilitation and alignment skills, with the ability to effectively navigate and influence across organizational silos.

  • Experience with aligning Agile delivery teams.

What you will be doing

1 month

  • Collaborate with key stakeholders to understand the research data landscape's current state and identify immediate improvement opportunities.

  • Document the as-is data/technical landscape for research data and the broader domain.

  • Build relationships and feedback loops with data governance, security, and other relevant groups to ensure alignment on data standards, security policies, and architectural principles.

  • Start to map out the existing data sources and identify potential issues that must be addressed.

3 months

  • Maintain a high-level roadmap for the development of the research data ecosystem, outlining key milestones and deliverables for the next 6-12 months, and presenting to senior leadership.

  • Determine how the technical architecture can support delivery autonomy while supporting consistent user journeys across our platforms.

  • Perform feasibility analysis and provide recommendations on Build vs. Buy for systems that support the agile development process, scalability, and data governance requirements.

  • Create an architectural forum to bring together architects and tech leads in the research data initiatives.

6 months

  • Refine the roadmap and architecture based on feedback from initial delivery, incorporating lessons learned and adjusting priorities as needed.

  • Scale the successful approaches to other areas of the research data ecosystem, empowering teams.

  • Develop and communicate a clear vision for the future of the research data ecosystem, highlighting its role in supporting strategic organizational goals.

#LI-AR1

#J-18808-Ljbffr

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Portfolio Projects That Get You Hired for Machine Learning Jobs (With Real GitHub Examples)

In today’s data-driven landscape, the field of machine learning (ML) is one of the most sought-after career paths. From startups to multinational enterprises, organisations are on the lookout for professionals who can develop and deploy ML models that drive impactful decisions. Whether you’re an aspiring data scientist, a seasoned researcher, or a machine learning engineer, one element can truly make your CV shine: a compelling portfolio. While your CV and cover letter detail your educational background and professional experiences, a portfolio reveals your practical know-how. The code you share, the projects you build, and your problem-solving process all help prospective employers ascertain if you’re the right fit for their team. But what kinds of portfolio projects stand out, and how can you showcase them effectively? This article provides the answers. We’ll look at: Why a machine learning portfolio is critical for impressing recruiters. How to select appropriate ML projects for your target roles. Inspirational GitHub examples that exemplify strong project structure and presentation. Tangible project ideas you can start immediately, from predictive modelling to computer vision. Best practices for showcasing your work on GitHub, personal websites, and beyond. Finally, we’ll share how you can leverage these projects to unlock opportunities—plus a handy link to upload your CV on Machine Learning Jobs when you’re ready to apply. Get ready to build a portfolio that underscores your skill set and positions you for the ML role you’ve been dreaming of!

Machine Learning Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

Machine learning is fuelling innovation across every industry, from healthcare to retail to financial services. As organisations look to harness large datasets and predictive algorithms to gain competitive advantages, the demand for skilled ML professionals continues to soar. Whether you’re aiming for a machine learning engineer role or a research scientist position, strong interview performance can open doors to dynamic projects and fulfilling careers. However, machine learning interviews differ from standard software engineering ones. Beyond coding proficiency, you’ll be tested on algorithms, mathematics, data manipulation, and applied problem-solving skills. Employers also expect you to discuss how to deploy models in production and maintain them effectively—touching on MLOps or advanced system design for scaling model inferences. In this guide, we’ve compiled 30 real coding & system‑design questions you might face in a machine learning job interview. From linear regression to distributed training strategies, these questions aim to test your depth of knowledge and practical know‑how. And if you’re ready to find your next ML opportunity in the UK, head to www.machinelearningjobs.co.uk—a prime location for the latest machine learning vacancies. Let’s dive in and gear up for success in your forthcoming interviews.

Negotiating Your Machine Learning Job Offer: Equity, Bonuses & Perks Explained

How to Secure a Compensation Package That Matches Your Technical Mastery and Strategic Influence in the UK’s ML Landscape Machine learning (ML) has rapidly shifted from an emerging discipline to a mission-critical function in modern enterprises. From optimising e-commerce recommendations to powering autonomous vehicles and driving innovation in healthcare, ML experts hold the keys to transformative outcomes. As a mid‑senior professional in this field, you’re not only crafting sophisticated algorithms; you’re often guiding strategic decisions about data pipelines, model deployment, and product direction. With such a powerful impact on business results, companies across the UK are going beyond standard salary structures to attract top ML talent. Negotiating a compensation package that truly reflects your value means looking beyond the numbers on your monthly payslip. In addition to a competitive base salary, you could be securing equity, performance-based bonuses, and perks that support your ongoing research, development, and growth. However, many mid‑senior ML professionals leave these additional benefits on the table—either because they’re unsure how to negotiate them or they simply underestimate their long-term worth. This guide explores every critical aspect of negotiating a machine learning job offer. Whether you’re joining an AI-focused start-up or a major tech player expanding its ML capabilities, understanding equity structures, bonus schemes, and strategic perks will help you lock in a package that matches your technical expertise and strategic influence. Let’s dive in.