Data Architect

Fusion People
england
1 year ago
Applications closed

Related Jobs

View all jobs

Data Engineering Director

Data Engineering Director

GCP Data Architect & Big Data Engineer

Lead Data Engineer / Architect – Databricks Active - SC Cleared

Lead Data Engineer / Architect – Databricks Active - SC Cleared

Senior Data Engineer & ETL Architect (Hybrid)

Data Architect (fully remote)

Salary: £85,000 + company benefits

Full time – Permanent

Must be able to gain SC Clearance

Job Purpose:

To work within a team of architects providing support to core infrastructure and business led projects, providing specific data architecture expertise to solution and enterprise architects.

The person appointed will be an integral member of the Architecture Team and will be responsible for ensuring that all initiatives explicitly consider data as part of their approach, and that all elements of the data life-cycle are adequately provisioned. They will also be expected to be involved in the design and implementation of the enterprise data strategy, ensuring the strategy supports the current and future business needs. The role will involve collaborating with Business and IT stakeholders at all levels to ensure the enterprise data strategy and associated implementation is adding value to the business.

Major Tasks and Activities:

Develop and evolve the enterprise data strategy to support delivery of corporate objectives Be a key stakeholder and advisor in all new strategic data initiatives and ensure alignment to the enterprise data strategy Be a key influencer to core system development decisions around the storage, integration, aggregation and access of data across the Picasso landscape Contribute to creating a framework of principles to ensure data integrity across the business (including but not limited to ERP, BI, Data warehouse, external interfaces etc.) Guide the organisation to make appropriate business, technology and data decisions by recommending reuse, sustainability and scalability, to achieve value for money and reduce risk Ensure that the Data Architecture strategy and roadmap is aligned to the business and technology strategies. Build and maintain appropriate Enterprise Architecture artefacts including; Entity Relationship Models, interface catalogues, and taxonomy to aid data traceability Design enterprise level data ontologies that support main business initiatives e.g. asset management, training and MRO

Qualification and Experience:

Experienced IT professional A bachelor’s degree in information technology or a related field. Experience in system architecture Excellent technical and analytical skills Strong communication and interpersonal skills. Good leadership and motivational skills. Experience in modelling and graphic representations Customer facing consultancy Senior Stakeholder management Technical qualifications e.g., MCSE, CCNA, TOGAF Demonstrable knowledge and experience of contributing to technical solutions for large scale complex projects A comprehensive understanding of data warehousing and data transformation (extract, transform and load) processes and the supporting technologies such as Azure Data Factory, Data Lake, other analytics products Experience of architecting data solution across hybrid (cloud, on premise) data platforms Experience implementing data solutions Excellent problem solving and data modelling skills (logical, physical, sematic and integration models) including; normalisation, OLAP / OLTP principles and entity relationship analysis Experience of mapping key Enterprise data entities to business capabilities and applications A strong knowledge of horizontal data lineage from source to output Possess in-depth knowledge of and able to consult on various technologies Strong knowledge of industry best practices around data architecture in both cloud based and on premise solutions Strong analytical and numerical skills are essential, enabling easy interpretation and analysis of large volumes of data A comprehensive understanding of the principles of and best practices behind data engineering, and the supporting technologies such as RDBMS, NoSQL, Cache & Inmemory stores Excellent communication and presentational skills, confident and methodical approach, and able to work within a team environment Working with environments complying with government JSP 604 Standards Experience of designing solutions that are accredited by external bodies such as MoD, and supporting Information Assurance in gaining accreditation Use of Architectural Toolset for design, process & lifecycle management (e.g. Sparx EA, Lean IX, System Architect, etc)

— Fusion People are committed to promoting equal opportunities to people regardless of age, gender, religion, belief, race, sexuality or disability. We operate as an employment agency and employment business. You’ll find a wide selection of vacancies on our website.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Are you considering a career change into machine learning in your 30s, 40s or 50s? You’re not alone. In the UK, organisations across industries such as finance, healthcare, retail, government & technology are investing in machine learning to improve decisions, automate processes & unlock new insights. But with all the hype, it can be hard to tell which roles are real job opportunities and which are just buzzwords. This article gives you a practical, UK-focused reality check: which machine learning roles truly exist, what skills employers really hire for, how long retraining realistically takes, how to position your experience and whether age matters in your favour or not. Whether you come from analytics, engineering, operations, research, compliance or business strategy, there is a credible route into machine learning if you approach it strategically.

How to Write a Machine Learning Job Ad That Attracts the Right People

Machine learning now sits at the heart of many UK organisations, powering everything from recommendation engines and fraud detection to forecasting, automation and decision support. As adoption grows, so does demand for skilled machine learning professionals. Yet many employers struggle to attract the right candidates. Machine learning job adverts often generate high volumes of applications, but few applicants have the blend of modelling skill, engineering awareness and real-world experience the role actually requires. Meanwhile, strong machine learning engineers and scientists quietly avoid adverts that feel vague, inflated or confused. In most cases, the issue is not the talent market — it is the job advert itself. Machine learning professionals are analytical, technically rigorous and highly selective. A poorly written job ad signals unclear expectations and low ML maturity. A well-written one signals credibility, focus and a serious approach to applied machine learning. This guide explains how to write a machine learning job ad that attracts the right people, improves applicant quality and strengthens your employer brand.

Maths for Machine Learning Jobs: The Only Topics You Actually Need (& How to Learn Them)

Machine learning job adverts in the UK love vague phrases like “strong maths” or “solid fundamentals”. That can make the whole field feel gatekept especially if you are a career changer or a student who has not touched maths since A level. Here is the practical truth. For most roles on MachineLearningJobs.co.uk such as Machine Learning Engineer, Applied Scientist, Data Scientist, NLP Engineer, Computer Vision Engineer or MLOps Engineer with modelling responsibilities the maths you actually use is concentrated in four areas: Linear algebra essentials (vectors, matrices, projections, PCA intuition) Probability & statistics (uncertainty, metrics, sampling, base rates) Calculus essentials (derivatives, chain rule, gradients, backprop intuition) Basic optimisation (loss functions, gradient descent, regularisation, tuning) If you can do those four things well you can build models, debug training, evaluate properly, explain trade-offs & sound credible in interviews. This guide gives you a clear scope plus a six-week learning plan, portfolio projects & resources so you can learn with momentum rather than drowning in theory.