Data Architect

Fusion People
england
10 months ago
Applications closed

Related Jobs

View all jobs

Data Architect

Data Architect

Data Architect

Senior Data Architect - Databricks

Data Engineering Lead / Data Architect

Data & AI Solution Architect, Azure, Remote

Data Architect (fully remote)

Salary: £85,000 + company benefits

Full time – Permanent

Must be able to gain SC Clearance

Job Purpose:

To work within a team of architects providing support to core infrastructure and business led projects, providing specific data architecture expertise to solution and enterprise architects.

The person appointed will be an integral member of the Architecture Team and will be responsible for ensuring that all initiatives explicitly consider data as part of their approach, and that all elements of the data life-cycle are adequately provisioned. They will also be expected to be involved in the design and implementation of the enterprise data strategy, ensuring the strategy supports the current and future business needs. The role will involve collaborating with Business and IT stakeholders at all levels to ensure the enterprise data strategy and associated implementation is adding value to the business.

Major Tasks and Activities:

Develop and evolve the enterprise data strategy to support delivery of corporate objectives Be a key stakeholder and advisor in all new strategic data initiatives and ensure alignment to the enterprise data strategy Be a key influencer to core system development decisions around the storage, integration, aggregation and access of data across the Picasso landscape Contribute to creating a framework of principles to ensure data integrity across the business (including but not limited to ERP, BI, Data warehouse, external interfaces etc.) Guide the organisation to make appropriate business, technology and data decisions by recommending reuse, sustainability and scalability, to achieve value for money and reduce risk Ensure that the Data Architecture strategy and roadmap is aligned to the business and technology strategies. Build and maintain appropriate Enterprise Architecture artefacts including; Entity Relationship Models, interface catalogues, and taxonomy to aid data traceability Design enterprise level data ontologies that support main business initiatives e.g. asset management, training and MRO

Qualification and Experience:

Experienced IT professional A bachelor’s degree in information technology or a related field. Experience in system architecture Excellent technical and analytical skills Strong communication and interpersonal skills. Good leadership and motivational skills. Experience in modelling and graphic representations Customer facing consultancy Senior Stakeholder management Technical qualifications e.g., MCSE, CCNA, TOGAF Demonstrable knowledge and experience of contributing to technical solutions for large scale complex projects A comprehensive understanding of data warehousing and data transformation (extract, transform and load) processes and the supporting technologies such as Azure Data Factory, Data Lake, other analytics products Experience of architecting data solution across hybrid (cloud, on premise) data platforms Experience implementing data solutions Excellent problem solving and data modelling skills (logical, physical, sematic and integration models) including; normalisation, OLAP / OLTP principles and entity relationship analysis Experience of mapping key Enterprise data entities to business capabilities and applications A strong knowledge of horizontal data lineage from source to output Possess in-depth knowledge of and able to consult on various technologies Strong knowledge of industry best practices around data architecture in both cloud based and on premise solutions Strong analytical and numerical skills are essential, enabling easy interpretation and analysis of large volumes of data A comprehensive understanding of the principles of and best practices behind data engineering, and the supporting technologies such as RDBMS, NoSQL, Cache & Inmemory stores Excellent communication and presentational skills, confident and methodical approach, and able to work within a team environment Working with environments complying with government JSP 604 Standards Experience of designing solutions that are accredited by external bodies such as MoD, and supporting Information Assurance in gaining accreditation Use of Architectural Toolset for design, process & lifecycle management (e.g. Sparx EA, Lean IX, System Architect, etc)

— Fusion People are committed to promoting equal opportunities to people regardless of age, gender, religion, belief, race, sexuality or disability. We operate as an employment agency and employment business. You’ll find a wide selection of vacancies on our website.

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Portfolio Projects That Get You Hired for Machine Learning Jobs (With Real GitHub Examples)

In today’s data-driven landscape, the field of machine learning (ML) is one of the most sought-after career paths. From startups to multinational enterprises, organisations are on the lookout for professionals who can develop and deploy ML models that drive impactful decisions. Whether you’re an aspiring data scientist, a seasoned researcher, or a machine learning engineer, one element can truly make your CV shine: a compelling portfolio. While your CV and cover letter detail your educational background and professional experiences, a portfolio reveals your practical know-how. The code you share, the projects you build, and your problem-solving process all help prospective employers ascertain if you’re the right fit for their team. But what kinds of portfolio projects stand out, and how can you showcase them effectively? This article provides the answers. We’ll look at: Why a machine learning portfolio is critical for impressing recruiters. How to select appropriate ML projects for your target roles. Inspirational GitHub examples that exemplify strong project structure and presentation. Tangible project ideas you can start immediately, from predictive modelling to computer vision. Best practices for showcasing your work on GitHub, personal websites, and beyond. Finally, we’ll share how you can leverage these projects to unlock opportunities—plus a handy link to upload your CV on Machine Learning Jobs when you’re ready to apply. Get ready to build a portfolio that underscores your skill set and positions you for the ML role you’ve been dreaming of!

Machine Learning Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

Machine learning is fuelling innovation across every industry, from healthcare to retail to financial services. As organisations look to harness large datasets and predictive algorithms to gain competitive advantages, the demand for skilled ML professionals continues to soar. Whether you’re aiming for a machine learning engineer role or a research scientist position, strong interview performance can open doors to dynamic projects and fulfilling careers. However, machine learning interviews differ from standard software engineering ones. Beyond coding proficiency, you’ll be tested on algorithms, mathematics, data manipulation, and applied problem-solving skills. Employers also expect you to discuss how to deploy models in production and maintain them effectively—touching on MLOps or advanced system design for scaling model inferences. In this guide, we’ve compiled 30 real coding & system‑design questions you might face in a machine learning job interview. From linear regression to distributed training strategies, these questions aim to test your depth of knowledge and practical know‑how. And if you’re ready to find your next ML opportunity in the UK, head to www.machinelearningjobs.co.uk—a prime location for the latest machine learning vacancies. Let’s dive in and gear up for success in your forthcoming interviews.

Negotiating Your Machine Learning Job Offer: Equity, Bonuses & Perks Explained

How to Secure a Compensation Package That Matches Your Technical Mastery and Strategic Influence in the UK’s ML Landscape Machine learning (ML) has rapidly shifted from an emerging discipline to a mission-critical function in modern enterprises. From optimising e-commerce recommendations to powering autonomous vehicles and driving innovation in healthcare, ML experts hold the keys to transformative outcomes. As a mid‑senior professional in this field, you’re not only crafting sophisticated algorithms; you’re often guiding strategic decisions about data pipelines, model deployment, and product direction. With such a powerful impact on business results, companies across the UK are going beyond standard salary structures to attract top ML talent. Negotiating a compensation package that truly reflects your value means looking beyond the numbers on your monthly payslip. In addition to a competitive base salary, you could be securing equity, performance-based bonuses, and perks that support your ongoing research, development, and growth. However, many mid‑senior ML professionals leave these additional benefits on the table—either because they’re unsure how to negotiate them or they simply underestimate their long-term worth. This guide explores every critical aspect of negotiating a machine learning job offer. Whether you’re joining an AI-focused start-up or a major tech player expanding its ML capabilities, understanding equity structures, bonus schemes, and strategic perks will help you lock in a package that matches your technical expertise and strategic influence. Let’s dive in.