Data Architect

Fusion People
england
10 months ago
Applications closed

Related Jobs

View all jobs

Data Architect

Data Architect - Contract

Data Architect

Data Architect

Data Architect

Data & AI Solution Architect, Azure, Remote

Data Architect (fully remote)

Salary: £85,000 + company benefits

Full time – Permanent

Must be able to gain SC Clearance

Job Purpose:

To work within a team of architects providing support to core infrastructure and business led projects, providing specific data architecture expertise to solution and enterprise architects.

The person appointed will be an integral member of the Architecture Team and will be responsible for ensuring that all initiatives explicitly consider data as part of their approach, and that all elements of the data life-cycle are adequately provisioned. They will also be expected to be involved in the design and implementation of the enterprise data strategy, ensuring the strategy supports the current and future business needs. The role will involve collaborating with Business and IT stakeholders at all levels to ensure the enterprise data strategy and associated implementation is adding value to the business.

Major Tasks and Activities:

Develop and evolve the enterprise data strategy to support delivery of corporate objectives Be a key stakeholder and advisor in all new strategic data initiatives and ensure alignment to the enterprise data strategy Be a key influencer to core system development decisions around the storage, integration, aggregation and access of data across the Picasso landscape Contribute to creating a framework of principles to ensure data integrity across the business (including but not limited to ERP, BI, Data warehouse, external interfaces etc.) Guide the organisation to make appropriate business, technology and data decisions by recommending reuse, sustainability and scalability, to achieve value for money and reduce risk Ensure that the Data Architecture strategy and roadmap is aligned to the business and technology strategies. Build and maintain appropriate Enterprise Architecture artefacts including; Entity Relationship Models, interface catalogues, and taxonomy to aid data traceability Design enterprise level data ontologies that support main business initiatives e.g. asset management, training and MRO

Qualification and Experience:

Experienced IT professional A bachelor’s degree in information technology or a related field. Experience in system architecture Excellent technical and analytical skills Strong communication and interpersonal skills. Good leadership and motivational skills. Experience in modelling and graphic representations Customer facing consultancy Senior Stakeholder management Technical qualifications e.g., MCSE, CCNA, TOGAF Demonstrable knowledge and experience of contributing to technical solutions for large scale complex projects A comprehensive understanding of data warehousing and data transformation (extract, transform and load) processes and the supporting technologies such as Azure Data Factory, Data Lake, other analytics products Experience of architecting data solution across hybrid (cloud, on premise) data platforms Experience implementing data solutions Excellent problem solving and data modelling skills (logical, physical, sematic and integration models) including; normalisation, OLAP / OLTP principles and entity relationship analysis Experience of mapping key Enterprise data entities to business capabilities and applications A strong knowledge of horizontal data lineage from source to output Possess in-depth knowledge of and able to consult on various technologies Strong knowledge of industry best practices around data architecture in both cloud based and on premise solutions Strong analytical and numerical skills are essential, enabling easy interpretation and analysis of large volumes of data A comprehensive understanding of the principles of and best practices behind data engineering, and the supporting technologies such as RDBMS, NoSQL, Cache & Inmemory stores Excellent communication and presentational skills, confident and methodical approach, and able to work within a team environment Working with environments complying with government JSP 604 Standards Experience of designing solutions that are accredited by external bodies such as MoD, and supporting Information Assurance in gaining accreditation Use of Architectural Toolset for design, process & lifecycle management (e.g. Sparx EA, Lean IX, System Architect, etc)

— Fusion People are committed to promoting equal opportunities to people regardless of age, gender, religion, belief, race, sexuality or disability. We operate as an employment agency and employment business. You’ll find a wide selection of vacancies on our website.

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine‑Learning Jobs for Non‑Technical Professionals: Where Do You Fit In?

The Model Needs More Than Math When ChatGPT went viral and London start‑ups raised seed rounds around “foundation models,” many professionals asked, “Do I need to learn PyTorch to work in machine learning?” The answer is no. According to the Turing Institute’s UK ML Industry Survey 2024, 39 % of advertised ML roles focus on strategy, compliance, product or operations rather than writing code. As models move from proof‑of‑concept to production, demand surges for specialists who translate algorithms into business value, manage risk and drive adoption. This guide reveals the fastest‑growing non‑coding ML roles, the transferable skills you may already have, real transition stories and a 90‑day action plan—no gradient descent necessary.

Quantexa Machine‑Learning Jobs in 2025: Your Complete UK Guide to Joining the Decision‑Intelligence Revolution

Money‑laundering rings, sanctioned entities, synthetic identities—complex risks hide in plain sight inside data. Quantexa, a London‑born scale‑up now valued at US $2.2 bn (Series F, August 2024), solves that problem with contextual decision‑intelligence (DI): graph analytics, entity resolution and machine learning stitched into a single platform. Banks, insurers, telecoms and governments from HSBC to HMRC use Quantexa to spot fraud, combat financial crime and optimise customer engagement. With the launch of Quantexa AI Studio in February 2025—bringing generative AI co‑pilots and large‑scale Graph Neural Networks (GNNs) to the platform—the company is hiring at record pace. The Quantexa careers portal lists 450+ open roles worldwide, over 220 in the UK across data science, software engineering, ML Ops and client delivery. Whether you are a graduate data scientist fluent in Python, a Scala veteran who loves Spark or a solutions architect who can turn messy data into knowledge graphs, this guide explains how to land a Quantexa machine‑learning job in 2025.

Machine Learning vs. Deep Learning vs. MLOps Jobs: Which Path Should You Choose?

Machine Learning (ML) continues to transform how businesses operate, from personalised product recommendations to automated fraud detection. As ML adoption accelerates in nearly every industry—finance, healthcare, retail, automotive, and beyond—the demand for professionals with specialised ML skills is surging. Yet as you browse Machine Learning jobs on www.machinelearningjobs.co.uk, you may encounter multiple sub-disciplines, such as Deep Learning and MLOps. Each of these fields offers unique challenges, requires a distinct skill set, and can lead to a rewarding career path. So how do Machine Learning, Deep Learning, and MLOps differ? And which area best aligns with your talents and aspirations? This comprehensive guide will define each field, highlight overlaps and differences, discuss salary ranges and typical responsibilities, and explore real-world examples. By the end, you’ll have a clearer vision of which career track suits you—whether you prefer building foundational ML models, pushing the boundaries of neural network performance, or orchestrating robust ML pipelines at scale.