Capacity Planning & Data Analyst

Heathrow
1 month ago
Applications closed

Related Jobs

View all jobs

Data Analyst

Associate Director, Operations and Data Analysis

Business Planner/data analyst assistant

Project Resource Analyst

Senior Applications Engineer

Director, Head of Exposure Analytics

Capacity Planning & Data Analyst
Location: Heathrow Airport
Salary: £35,000pa
Working Format: Hybrid working 3 days in the office and 2 days at home Contract Type: Permanent
Benefits: 28 days annual leave (plus bank holidays), Medical Cover, Wellbeing membership, Pension Scheme
 
We are seeking a highly motivated and detail-oriented in this role, you will work closely with Data Engineers and Power Platform Developers to drive operational efficiency, streamline processes, and optimize business performance. As a Capacity Planning & Data Analyst, you will have the opportunity to work with cutting-edge technologies and help ensure the smooth operation of airport logistics, improving the travel experience for millions of passengers globally.

Role Responsibilities:

Assist in the development and maintenance of capacity models for baggage handling systems to ensure optimal performance during peak and off-peak periods.
Monitor system performance data to identify potential capacity constraints and recommend corrective actions.
Collaborate with senior planners to adjust operational plans based on anticipated passenger volumes and baggage loads.
Collect, clean, and validate operational data from various sources, including baggage handling systems, airport traffic reports, and other relevant databases.
Conduct data analysis to identify trends, inefficiencies, and areas for improvement in the baggage handling process.
Produce regular and ad-hoc reports, visualizations, and dashboards to communicate key insights to stakeholders.
Assist in the preparation of operational forecasts and scenario analysis to support decision-making.
Provide data-driven insights to support the planning of maintenance schedules, staff allocation, and resource utilization.
Work closely with the operations team to ensure that data analysis aligns with on-the-ground realities.
Support initiatives to improve data quality, collection processes, and analytical tools.
Participate in cross-functional projects aimed at enhancing the performance and capacity of the baggage handling system.  
 
Role Qualifications and Skills:

Bachelor’s degree in a relevant field such as Operations Research, Data Science, Industrial Engineering, Mathematics, or a related discipline.
Previous experience or internships in data analysis, capacity planning, logistics, or operations management is a plus.
Familiarity with baggage handling systems, airport operations, or material handling systems is desirable but not essential.
Proficiency in data analysis tools and software such as Excel, SQL, Python, or R.
Experience with data visualization tools (e.g., Power BI, Tableau) is a plus.
Basic understanding of capacity planning methodologies and principles.
Strong problem-solving skills with the ability to analyze complex data sets and translate findings into actionable insights.
Attention to detail and a commitment to data accuracy.
Ability to communicate technical information effectively to both technical and non-technical stakeholders.
Strong written and verbal communication skills.
Proactive, with a willingness to learn and take on new challenges.
Ability to work collaboratively in a team environment.
Strong organizational skills and the ability to manage multiple tasks simultaneously.  
Benefits:

28 days annual leave (excluding public holidays)
Bupa Medical Cover
YuLife – Wellbeing membership with fast access to GP appointments, health promotion, and daily quests to earn Yucoins that can be exchanged for shopping vouchers.
Perkbox – Includes free eye tests at Specsavers, discounts on glasses, free cinema vouchers, a weekly free coffee from Nero, and hundreds of savings on day-to-day shopping and activities.
A challenging work environment with opportunities for career progression.
Cycle to work scheme.
Pension with Aviva.
Access to Achievers, an award-winning recognition platform to inspire and acknowledge your coworkers, where points can be exchanged for various goods and discounts

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Global vs. Local: Comparing the UK Machine Learning Job Market to International Landscapes

How to evaluate opportunities, salaries, and work culture in machine learning across the UK, the US, Europe, and Asia Machine learning (ML) has rapidly transcended the research labs of academia to become a foundational pillar of modern technology. From recommendation engines and autonomous vehicles to fraud detection and personalised healthcare, machine learning techniques are increasingly ubiquitous, transforming how organisations operate. This surge in applications has fuelled an extraordinary global demand for ML professionals—data scientists, ML engineers, research scientists, and more. In this article, we’ll examine how the UK machine learning job market compares to prominent international hubs, including the United States, Europe, and Asia. We’ll explore hiring trends, salary ranges, workplace cultures, and the nuances of remote and overseas roles. Whether you’re a fresh graduate aiming to break into the field, a software engineer with an ML specialisation, or a seasoned professional seeking your next challenge, understanding the global ML landscape is essential for making an informed career move. By the end of this overview, you’ll be equipped with insights into which regions offer the best blend of salaries, work-life balance, and cutting-edge projects—plus practical tips on how to succeed in a domain that’s constantly evolving. Let’s dive in.

Machine Learning Leadership for Managers: Strategies to Motivate, Mentor, and Set Realistic Goals in Data-Driven Teams

Machine learning (ML) has become an indispensable force in the modern business world, influencing everything from targeted marketing campaigns to advanced medical diagnostics. As industries integrate predictive algorithms and data-driven decision-making into their core operations, the need for effective leadership in machine learning environments has never been greater. Whether you’re overseeing a small team of data scientists or spearheading an enterprise-scale ML project, your leadership style must accommodate rapid innovation, complex problem-solving, and diverse stakeholder expectations. This guide provides actionable insights into how you can motivate, mentor, and establish achievable goals for your machine learning teams—ensuring they thrive in data-driven environments.

Top 10 Books to Advance Your Machine Learning Career in the UK

Machine learning (ML) remains one of the fastest-growing fields within technology, reshaping industries across the UK from finance and healthcare to e-commerce, telecommunications, and beyond. With increasing demand for ML specialists, job seekers who continually update their knowledge and skills hold a significant advantage. In this article, we've curated ten essential books every machine learning professional or aspiring ML engineer in the UK should read. Covering foundational theory, practical implementations, advanced techniques, and industry trends, these resources will equip you to excel in your machine learning career.