National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Applied Scientist, Personalization

Amazon
London
2 months ago
Applications closed

Related Jobs

View all jobs

Director, Machine Learning Science

Applied Scientist II - Computer Vision

Senior Applied Scientist - Computer Vision

Deep Learning Scientist

Senior Data Scientist

Data Scientist – Applied Immunology

Job ID: 2875918 | Amazon Development Center (Tel Aviv)

Are you a scientist interested in pushing the state of the art in machine learning and recommendation systems? Are you interested in working on novel ideas that can positively impact millions of customers? Do you wish you had access to large datasets and tremendous computational resources? Answer yes to any of these questions and you will be a great fit for our team at Amazon.

Our team is part of Amazon’s Personalization organization, a high-performing group that leverages Amazon’s expertise in machine learning, big data, distributed systems, and user experience design to deliver the best shopping experiences for our customers. Our team builds large-scale machine-learning solutions that delight customers with personalized content recommendations, at the right time, with the right level of explanation.

As an Applied Scientist in our team, you will be responsible for the research, design, and development of new AI technologies for personalization. You will adopt or invent new machine learning and analytical techniques in the realm of recommendations and large language models. You will collaborate with scientists, engineers, and product partners locally and abroad. Your work will include inventing, experimenting with, and launching new features, products and systems.

Please visit https://www.amazon.science for more information.

BASIC QUALIFICATIONS

  1. PhD in CS/EE or related field, or MSc and 5+ years of applied research experience
  2. Strong CS foundations (data structures and algorithms)
  3. Excellent coding and design skills, proficiency with programming languages such as Java or Python
  4. Several publications at top-tier peer-reviewed research conferences or journals
  5. Strong communication and collaboration skills

PREFERRED QUALIFICATIONS

  1. Experience in building and launching deep learning and machine learning models for business applications
  2. Solid knowledge of big data and cloud technologies (e.g., Spark, AWS, etc.)
  3. Experience with information retrieval, recommender systems, natural language processing, and/or personalization algorithms
  4. Publications at top Web, Machine Learning, Natural Language Processing conferences such as KDD, ICML, NeurIPS, ACL, EMNLP, etc.

Our inclusive culture empowers Amazonians to deliver the best results for our customers. If you have a disability and need a workplace accommodation or adjustment during the application and hiring process, including support for the interview or onboarding process, please visit https://amazon.jobs/content/en/how-we-hire/accommodations for more information.

Amazon is committed to a diverse and inclusive workplace. Amazon is an equal opportunity employer and does not discriminate on the basis of race, national origin, gender, gender identity, sexual orientation, protected veteran status, disability, age, or other legally protected status.

#J-18808-Ljbffr

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

LinkedIn Profile Checklist for Machine Learning Jobs: 10 Tweaks to Drive Recruiter Interest

The machine learning landscape is rapidly evolving, with demand soaring for experts in modelling, algorithm tuning and data-driven insights. Recruiters hunt for candidates proficient in Python, TensorFlow, PyTorch and MLOps processes. A generic profile simply won’t cut it. Our step-by-step LinkedIn for machine learning jobs checklist covers 10 targeted tweaks to ensure your profile ranks in searches and communicates your technical impact. Whether launching your ML career or seeking leadership roles, these optimisations will sharpen your professional narrative and boost recruiter engagement.

Part-Time Study Routes That Lead to Machine Learning Jobs: Evening Courses, Bootcamps & Online Masters

Machine learning—a subset of artificial intelligence—enables computers to learn from data and improve over time without explicit programming. From predictive maintenance in manufacturing to recommendation engines in e-commerce and diagnostic tools in healthcare, machine learning (ML) underpins many of today’s most innovative applications. In the UK, demand for ML professionals—engineers, data scientists, research scientists and ML operations specialists—is growing rapidly, with roles projected to increase by over 50% in the next five years. However, many aspiring ML practitioners cannot step away from work or personal commitments for full-time study. Thankfully, a rich ecosystem of part-time learning pathways—Evening Courses, Intensive Bootcamps and Flexible Online Master’s Programmes—empowers you to learn machine learning while working. This comprehensive guide examines each route: foundational CPD units, immersive bootcamps, accredited online MSc programmes, funding options, planning strategies and a real-world case study. Whether you’re a software developer branching into ML, a statistician aiming to upskill, or a professional exploring AI-driven innovation, you’ll discover how to build in-demand ML expertise on your own schedule.

The Ultimate Assessment-Centre Survival Guide for Machine Learning Jobs in the UK

Assessment centres for machine learning positions in the UK are designed to reflect the complexity and collaboration required in real-world ML projects. From psychometric assessments and live model-building tasks to group data science challenges and behavioural interviews, recruiters evaluate your statistical understanding, coding skills, communication and teamwork. Whether you specialise in deep learning, reinforcement learning or NLP, this guide offers a step-by-step approach to excel at every stage and secure your next ML role.