Senior Data Scientist

Pear Bio
London
6 days ago
Applications closed

Related Jobs

View all jobs

Senior Data Scientist - Consumer Behaviour – exciting ‘scale up’ proposition

Senior Data Scientist – Machine Learning -  Defence – Eligible for SC

Senior Data Scientist

Senior Data Scientist

Senior Data Scientist (Generative AI) - RELOCATION TO ABU DHABI

Senior Data Scientist

About Pear Bio

At Pear Bio, we are personalizing cancer treatment selection because every cancer is unique. To achieve this, we have developed a test that cultures patient tumor samples and matched immune cells, monitors cell behaviors during therapy exposure, and identifies effective treatments for that patient. This technology acts as a translational model and clinical development tool for drug discovery. Our patient data, biobank and biomarker technology have led to the creation of an in-house drug discovery pipeline for cancers with high unmet need.

We are a VC-backed start-up based in London, England and Natick, Massachusetts. To grow our company, we’re looking for aSenior Data Scientistwith experience inbiotechto join our early-stage team. Will you be the one?


Job Description

This role offers an opportunity to apply your expertise in data science, machine learning, and statistical modeling tooncology-focused target identification and drug discovery. You will work with diverse datasets, from different sources including genomics, transcriptomics, proteomics, and high-content imaging data, to support the identification of cancer targets and the development of novel therapeutics.

You will be part of the Software Team and support wet-lab scientists across our Target and Drug Discovery and Precision Medicine R&D teams on a number of exciting projects at Pear Bio.


Job Responsibilities

  • Develop and implement machine learning and statistical models for target discovery, drug development and patient response prediction.
  • Collaborate with wet-lab scientists to design experiments and analyze results to inform target and drug discovery efforts.
  • Integrate and analyze multi-omic datasets (genomics, transcriptomics, proteomics), imaging data and clinical data to extract meaningful insights.
  • Build robust data pipelines for processing, integrating, and mining structured and unstructured biomedical data.
  • Design and develop interactive dashboards and visualization tools to support data-driven decision-making.
  • Work on single-cell resolution data from high-throughput imaging pipelines to identify biomarkers and therapeutic targets.
  • Present findings in internal meetings and contribute to scientific publications and conferences.
  • Stay up to date with advancements in computational oncology, machine learning, and data science methodologies.
  • Manage multiple projects simultaneously and ensure timely, high-quality deliverables.



Must-Haves:

  • MSc/PhD in data science, computational biology, bioinformatics, biostatistics, or a related field.
  • 3+ years of professional experience in biotech, pharma, or academia focusing on life science projects (ideally oncology drug discovery).
  • Strong foundation in statistics, data analysis and machine learning.
  • Experience working with high-dimensional biological datasets (e.g., transcriptomics, proteomics, genomics, imaging data).
  • Proficient in Python and/or R for data wrangling, modeling, and visualization.
  • Hands-on experience with data integration, mining, and visualization tools.
  • Experience working with relational and non-relational databases.
  • Strong written and verbal communication skills and the ability to present complex analyses to a diverse audience.

Nice-to-Haves:

  • Understanding of cancer biology, target identification, and drug response modeling.
  • Experience working as an applied scientist or closely with wet-lab biologists.
  • Experience with collaborative coding and version control (ideally GitHub).
  • Experience developing and deploying bioinformatics pipelines.
  • Familiarity with cloud computing environments (ideally AWS) for large-scale data analysis.

What’s in it for You:

  • London office/lab space
  • Competitive compensation in line with industry standards
  • Stock options in a growing startup
  • 28 days of annual leave excluding bank holidays and Christmas closure
  • Yearly personal development budget, plus the chance to represent the company at international conferences
  • Open work environment where your opinions are valued
  • High career growth & personal development in a fast-paced, dynamic environment
  • The chance to have an impact in shaping the future of an early-stage start-up
  • Company perks / discounts via Perks at Work



Please note:

  • We are unable to sponsor work visas at this time. Please confirm your ability to work in the UK without visa sponsorship before applying.
  • The position is not eligible for remote work. If you are not based out of London, you will be expected to relocate.


Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Write a Winning Cover Letter for Machine Learning Jobs: Proven 4-Paragraph Structure

Learn how to craft the perfect cover letter for machine learning jobs with this proven 4-paragraph structure. Ideal for entry-level candidates, career switchers, and professionals looking to advance in the machine learning sector. When applying for a machine learning job, your cover letter is a vital part of your application. Machine learning is an exciting and rapidly evolving field, and your cover letter offers the chance to demonstrate your technical expertise, passion for AI, and your ability to apply machine learning techniques to solve real-world problems. Writing a cover letter for machine learning roles may feel intimidating, but by following a clear structure, you can showcase your strengths effectively. Whether you're just entering the field, transitioning from another role, or looking to advance your career in machine learning, this article will guide you through a proven four-paragraph structure. We’ll provide practical tips and sample lines to help you create a compelling cover letter that catches the attention of hiring managers in the machine learning job market.

Veterans in Machine Learning: A Military‑to‑Civilian Pathway into AI Careers

Introduction Artificial intelligence is no longer relegated to sci‑fi films—it underpins battlefield decision‑support, fraud detection, and even supermarket logistics. The UK Government’s 2025 AI Sector Deal forecasts an additional £200 billion in GDP by 2030, with machine‑learning (ML) engineers cited as the nation’s second most in‑demand tech role (Tech Nation 2024). The Ministry of Defence’s Defence AI Strategy echoes that urgency, earmarking £1.6 billion for FY 2025–28 to embed ML into planning, logistics, and autonomous systems. If you have ever tuned a radar filter, plotted artillery trajectories, or sifted sensor data for actionable intel, you have already worked with statistical modelling—the backbone of machine learning. This guide shows UK veterans how to reframe military experience for ML roles, leverage MoD transition funding, and land high‑impact positions building the models shaping tomorrow’s defence and commercial landscapes. Quick Win: Bookmark our live board for Machine‑Learning Engineer roles to see who’s hiring today.

Rural-Remote Machine Learning Jobs: Finding Balance Beyond the Big Cities

Over the past decade, machine learning (ML) has transformed from a niche research domain into a pervasive technology underpinning everything from recommendation systems and voice assistants to financial forecasting and autonomous vehicles. Historically, the UK’s major tech hubs—particularly London—have been magnets for top ML talent and corporate headquarters. However, remote work has become mainstream, and many ML professionals are realising they can excel in their field while living far beyond the city limits. At MachineLearningJobs.co.uk, we’ve observed a growing interest in positions that allow for a rural lifestyle or a coastal environment, often reflected in search terms like “ML remote countryside” or “tech jobs by the sea.” This surge is no coincidence. Flexible work policies, better rural broadband, and the nature of machine learning tasks—much of which can be done through cloud platforms—are bringing new opportunities to those who wish to swap urban hustle for fresh air and scenic views. Whether you’re a data scientist, ML engineer, researcher, or product manager, a rural or seaside move could reinvigorate your work-life balance. In this article, we’ll unpack why rural-remote ML jobs are on the rise, how you can navigate the challenges of leaving the city, and what you need to do to thrive in a machine learning career beyond the M25. If you’ve dreamt of looking up from your laptop to rolling fields or ocean waves, keep reading—your rural ML role might be closer than you think.