Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Applied AI ML - Senior Associate - Machine Learning Engineer

J.P. MORGAN
City of London
1 month ago
Applications closed

Related Jobs

View all jobs

Risk Management – Data Scientist / Applied AI ML Lead - Vice President

Computer Vision AI Data Scientist

Lead Forward-Deployed Data Scientist

Senior Data Science Consultant, AWS Professional Services

Senior Data Science Consultant, AWS Professional Services

Senior Data Science Consultant, AWS Professional Services

Overview

Join a high performing team of applied AI experts to drive innovation and new capabilities in the Commercial & Investment Bank.

As an Applied AI / ML Senior Associate Machine Learning Engineer in the Applied AI ML team at JPMorgan Commercial & Investment Bank, you will be at the forefront of combining cutting-edge AI techniques with the company's unique data assets to optimize business decisions and automate processes. You will have the opportunity to advance the state-of-the-art in AI as applied to financial services, leveraging the latest research from fields of Natural Language Processing, Computer Vision, and statistical machine learning. You will be instrumental in building products that automate processes, help experts prioritize their time, and make better decisions. We have a growing portfolio of AI–powered products and services and increasing opportunity for re-use of foundational components through careful design of libraries and services to be leveraged across the team. This role offers a unique blend of scientific research and software engineering, requiring a deep understanding of both mindsets.


Responsibilities
  • Build robust Data Science capabilities which can be scaled across multiple business use cases
  • Collaborate with software engineering team to design and deploy Machine Learning services that can be integrated with strategic systems
  • Research and analyse data sets using a variety of statistical and machine learning techniques
  • Communicate AI capabilities and results to both technical and non-technical audiences
  • Document approaches taken, techniques used and processes followed to comply with industry regulation
  • Collaborate closely with cloud and SRE teams while taking a leading role in the design and delivery of the production architectures for our solutions
  • Act as an individual contributor, though there will be optional opportunity for management responsibility dependent on the candidate's experience.

Required qualifications, capabilities, and skills
  • Masters or PhD in a quantitative discipline, e.g. Computer Science, Mathematics, Statistics
  • Solid understanding of fundamentals of statistics, optimization and ML theory. Familiarity with popular deep learning architectures (transformers, CNN, autoencoders etc.)
  • Specialism or well-researched interest in NLP
  • Broad knowledge of MLOps tooling – for versioning, reproducibility, observability etc.
  • Experience monitoring, maintaining, enhancing existing models over an extended time period
  • Extensive experience with pytorch and related data science python libraries (e.g. pandas)
  • Experience of containerising applications or models for deployment (Docker)
  • Experience with one of the major public cloud providers (Azure, AWS, GCP)
  • Ability to communicate technical information and ideas at all levels; convey information clearly and create trust with stakeholders.

Preferred qualifications, capabilities, and skills
  • Experience designing/ implementing pipelines using DAGs (e.g. Kubeflow, DVC, Ray)
  • Experience of big data technologies
  • Have constructed batch and streaming microservices exposed as REST/gRPC endpoints
  • Experience with container orchestration tools (e.g. Kubernetes, Helm)
  • Knowledge of open source datasets and benchmarks in NLP
  • Hands-on experience in implementing distributed/multi-threaded/scalable applications
  • Track record of developing, deploying business critical machine learning models

About Us

J.P. Morgan is a global leader in financial services, providing strategic advice and products to the world's most prominent corporations, governments, wealthy individuals and institutional investors. Our first-class business in a first-class way approach to serving clients drives everything we do. We strive to build trusted, long-term partnerships to help our clients achieve their business objectives.

We recognize that our people are our strength and the diverse talents they bring to our global workforce are directly linked to our success. We are an equal opportunity employer and place a high value on diversity and inclusion at our company. We do not discriminate on the basis of any protected attribute, including race, religion, color, national origin, gender, sexual orientation, gender identity, gender expression, age, marital or veteran status, pregnancy or disability, or any other basis protected under applicable law. We also make reasonable accommodations for applicants' and employees' religious practices and beliefs, as well as mental health or physical disability needs. Visit our FAQs for more information about requesting an accommodation.


About The Team

J.P. Morgan's Commercial & Investment Bank is a global leader across banking, markets, securities services and payments. Corporations, governments and institutions throughout the world entrust us with their business in more than 100 countries. The Commercial & Investment Bank provides strategic advice, raises capital, manages risk and extends liquidity in markets around the world.


#J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Hiring Trends 2026: What to Watch Out For (For Job Seekers & Recruiters)

As we move into 2026, the machine learning jobs market in the UK is going through another big shift. Foundation models and generative AI are everywhere, companies are under pressure to show real ROI from AI, and cloud costs are being scrutinised like never before. Some organisations are slowing hiring or merging teams. Others are doubling down on machine learning, MLOps and AI platform engineering to stay competitive. The end result? Fewer fluffy “AI” roles, more focused machine learning roles with clear ownership and expectations. Whether you are a machine learning job seeker planning your next move, or a recruiter trying to build ML teams, understanding the key machine learning hiring trends for 2026 will help you stay ahead.

Machine Learning Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK machine learning hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise shipped ML/LLM features, robust evaluation, observability, safety/governance, cost control and measurable business impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for ML engineers, applied scientists, LLM application engineers, ML platform/MLOps engineers and AI product managers. Who this is for: ML engineers, applied ML/LLM engineers, LLM/retrieval engineers, ML platform/MLOps/SRE, data scientists transitioning to production ML, AI product managers & tech‑lead candidates targeting roles in the UK.

Why Machine Learning Careers in the UK Are Becoming More Multidisciplinary

Machine learning (ML) has moved from research labs into mainstream UK businesses. From healthcare diagnostics to fraud detection, autonomous vehicles to recommendation engines, ML underpins critical services and consumer experiences. But the skillset required of today’s machine learning professionals is no longer purely technical. Employers increasingly seek multidisciplinary expertise: not only coding, algorithms & statistics, but also knowledge of law, ethics, psychology, linguistics & design. This article explores why UK machine learning careers are becoming more multidisciplinary, how these fields intersect with ML roles, and what both job-seekers & employers need to understand to succeed in a rapidly changing landscape.