Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Applied AI ML Director - NLP / LLM and Graphs

JPMorgan Chase & Co.
City of London
6 days ago
Create job alert
Job Description

The Chief Data & Analytics Office (CDAO) at JPMorgan Chase is responsible for accelerating the firm's data and analytics journey. This includes ensuring the quality, integrity, and security of the company's data, as well as leveraging this data to generate insights and drive decision-making. The CDAO is also responsible for developing and implementing solutions that support the firm's commercial goals by harnessing artificial intelligence and machine learning technologies to develop new products, improve productivity, and enhance risk management effectively and responsibly.


As an Applied AI ML Director - NLP / LLM and Graphs within the Chief Data & Analytics Office, Machine Learning Centre of Excellence, you will have the opportunity to apply sophisticated machine learning methods to complex tasks including natural language processing, graph analytics, speech analytics, time series, reinforcement learning and recommendation systems. You will collaborate with various teams and actively participate in our knowledge sharing community. We are looking for someone who excels in a highly collaborative environment, working together with our business, technologists and control partners to deploy solutions into production. If you have a strong passion for machine learning and enjoy investing time towards learning, researching and experimenting with new innovations in the field, this role is for you. We value solid expertise in Deep Learning with hands-on implementation experience, strong analytical thinking, a deep desire to learn and high motivation.


Responsibilities

  • Research and explore new machine learning methods through independent study, attending industry-leading conferences, experimentation and participating in our knowledge sharing community
  • Develop state-of-the art machine learning models to solve real-world problems and apply it to tasks such as natural language processing (NLP), speech recognition and analytics, time-series predictions or recommendation systems
  • Collaborate with multiple partner teams such as Business, Technology, Product Management, Legal, Compliance, Strategy and Business Management to deploy solutions into production
  • Drive Firm wide initiatives by developing large-scale frameworks to accelerate the application of machine learning models across different areas of the business

Required qualifications, capabilities, and skills

  • PhD in a quantitative discipline, e.g. Computer Science, Electrical Engineering, Mathematics, Operations Research, Optimization, or Data Science Or an MS with significant years of industry or research experience in the field.
  • Solid background in NLP, LLM and graph analytics and hands-on experience and solid understanding of machine learning and deep learning methods
  • Extensive experience with machine learning and deep learning toolkits (e.g.: TensorFlow, PyTorch, NumPy, Scikit-Learn, Pandas)
  • Ability to design experiments and training frameworks, and to outline and evaluate intrinsic and extrinsic metrics for model performance aligned with business goals
  • Experience with big data and scalable model training and solid written and spoken communication to effectively communicate technical concepts and results to both technical and business audiences.
  • Scientific thinking with the ability to invent and to work both independently and in highly collaborative team environments
  • Solid written and spoken communication to effectively communicate technical concepts and results to both technical and business audiences. Curious, hardworking and detail-oriented, and motivated by complex analytical problems

Preferred qualifications, capabilities , and skills

  • Strong background in Mathematics and Statistics and familiarity with the financial services industries and continuous integration models and unit test development
  • Knowledge in search/ranking, Reinforcement Learning or Meta Learning
  • Experience with A/B experimentation and data/metric-driven product development, cloud-native deployment in a large scale distributed environment and ability to develop and debug production-quality code
  • Published research in areas of Machine Learning, Deep Learning or Reinforcement Learning at a major conference or journal

About MLCOE

The Machine Learning Center of Excellence (MCLOE) team partners across the firm to create and share Machine Learning Solutions for our most challenging business problems. In this role you will work and collaborate with a team comprised of a multi-disciplinary community of experts focused exclusively on Machine Learning. On this team you will work with cutting-edge techniques in disciplines such as Deep Learning and Reinforcement Learning.


For more information about the MLCOE, please visit the MLCOE page.


About Us

J.P. Morgan is a global leader in financial services, providing strategic advice and products to the world's most prominent corporations, governments, wealthy individuals and institutional investors. Our first-class business in a first-class way approach to serving clients drives everything we do. We strive to build trusted, long-term partnerships to help our clients achieve their business objectives.


We recognize that our people are our strength and the diverse talents they bring to our global workforce are directly linked to our success. We are an equal opportunity employer and place a high value on diversity and inclusion at our company. We do not discriminate on the basis of any protected attribute, including race, religion, color, national origin, gender, sexual orientation, gender identity, gender expression, age, marital or veteran status, pregnancy or disability, or any other basis protected under applicable law. We also make reasonable accommodations for applicants' and employees' religious practices and beliefs, as well as mental health or physical disability needs. Visit our FAQs for more information about requesting an accommodation.


About the Team

Our professionals in our Corporate Functions cover a diverse range of areas from finance and risk to human resources and marketing. Our corporate teams are an essential part of our company, ensuring that we're setting our businesses, clients, customers and employees up for success.


#J-18808-Ljbffr

Related Jobs

View all jobs

Senior Machine Learning Engineer (UK)

Senior Director of Generative AI - R&D Data Science & Digital Health

Senior Director of Generative AI - R&D Data Science & Digital Health

Senior Director of Generative AI - R&D Data Science & Digital Health

Principal Machine Learning Engineer

Senior Data Scientist (UK)

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK machine learning hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise shipped ML/LLM features, robust evaluation, observability, safety/governance, cost control and measurable business impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for ML engineers, applied scientists, LLM application engineers, ML platform/MLOps engineers and AI product managers. Who this is for: ML engineers, applied ML/LLM engineers, LLM/retrieval engineers, ML platform/MLOps/SRE, data scientists transitioning to production ML, AI product managers & tech‑lead candidates targeting roles in the UK.

Why Machine Learning Careers in the UK Are Becoming More Multidisciplinary

Machine learning (ML) has moved from research labs into mainstream UK businesses. From healthcare diagnostics to fraud detection, autonomous vehicles to recommendation engines, ML underpins critical services and consumer experiences. But the skillset required of today’s machine learning professionals is no longer purely technical. Employers increasingly seek multidisciplinary expertise: not only coding, algorithms & statistics, but also knowledge of law, ethics, psychology, linguistics & design. This article explores why UK machine learning careers are becoming more multidisciplinary, how these fields intersect with ML roles, and what both job-seekers & employers need to understand to succeed in a rapidly changing landscape.

Machine Learning Team Structures Explained: Who Does What in a Modern Machine Learning Department

Machine learning is now central to many advanced data-driven products and services across the UK. Whether you work in finance, healthcare, retail, autonomous vehicles, recommendation systems, robotics, or consumer applications, there’s a need for dedicated machine learning teams that can deliver models into production, maintain them, keep them secure, efficient, fair, and aligned with business objectives. If you’re hiring for or applying to ML roles via MachineLearningJobs.co.uk, this article will help you understand what roles are typically present in a mature machine learning department, how they collaborate through project lifecycles, what skills and qualifications UK employers look for, what the career paths and salaries are, current trends and challenges, and how to build an effective ML team.