Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Senior Data Scientist

Faculty
London
3 days ago
Applications closed

Related Jobs

View all jobs

Senior Data Scientist

Senior Data Scientist

Senior Data Scientist

Senior Data Scientist

Senior Data Scientist - Personalisation/Segmentation

Senior Data Scientist

About Faculty


At Faculty, we transform organisational performance through safe, impactful and human-centric AI.

With more than a decade of experience, we provide over 350 global customers with software, bespoke AI consultancy, and Fellows from our award winning Fellowship programme.

Our expert team brings together leaders from across government, academia and global tech giants to solve the biggest challenges in applied AI.

Should you join us, you’ll have the chance to work with, and learn from, some of the brilliant minds who are bringing Frontier AI to the frontlines of the world.

We operate a hybrid way of working, meaning that you'll split your time across client location, Faculty's Old Street office and working from home depending on the needs of the project. For this role, you can expect to be client-side for up-to three days per week at times and working either from home or our Old street office for the rest of your time.What you'll be doing:

As a Senior Data Scientist in our Defence business unit you will lead project teams that deliver bespoke algorithms to our clients across the defence and national security sector. You will be responsible for conceiving the data science approach, for designing the associated software architecture, and for ensuring that best practices are followed throughout.

You will help our excellent commercial team build strong relationships with clients, shaping the direction of both current and future projects. Particularly in the initial stages of commercial engagements, you will guide the process of defining the scope of projects to come with an emphasis on technical feasibility. We consider this work as fundamental towards ensuring that Faculty can continue to deliver high-quality software within the allocated timeframes.

You will play an important role in the development of others at Faculty by acting as the designated mentor of a small number of data scientists, and by supporting the professional growth of data scientists on the project team. The latter includes giving targeted support where needed, and providing step-up opportunities where helpful.

Faculty has earned wide recognition as a leader in practical data science. You will actively contribute to the growth of this reputation by delivering courses to high-value clients, by talking at major conferences, by participating in external roundtables, or by contributing to large-scale open-source projects. You will also have the opportunity to teach on the fellowship about topics that range from basic statistics to reinforcement learning, and to mentor the fellows through their 6-week project.

Thanks to Faculty platform, you will have access to powerful computational resources, and you will enjoy the comforts of fast configuration, secure collaboration and easy deployment. Because your work in data science will inform the development of our AI products, you will often collaborate with software engineers and designers from our dedicated product team.

Who we're looking for:

  • Senior experience in either a professional data science position or a quantitative academic field

  • Strong programming skills as evidenced by earlier work in data science or software engineering. Although your programming language of choice (e.g. R, MATLAB or C) is not important, we do require the ability to become a fluent Python programmer in a short timeframe

  • An excellent command of the basic libraries for data science (e.g. NumPy, Pandas, Scikit-Learn) and familiarity with a deep-learning framework (e.g. TensorFlow, PyTorch, Caffe)

  • A high level of mathematical competence and proficiency in statistics

  • A solid grasp of essentially all of the standard data science techniques, for example, supervised/unsupervised machine learning, model cross validation, Bayesian inference, time-series analysis, simple NLP, effective SQL database querying, or using/writing simple APIs for models. We regard the ability to develop new algorithms when an innovative solution is needed as a fundamental skill

  • A leadership mindset focussed on growing the technical capabilities of the team; a caring attitude towards the personal and professional development of other data scientists; enthusiasm for nurturing a collaborative and dynamic culture

  • An appreciation for the scientific method as applied to the commercial world; a talent for converting business problems into a mathematical framework; resourcefulness in overcoming difficulties through creativity and commitment; a rigorous mindset in evaluating the performance and impact of models upon deployment

  • Some commercial experience, particularly if this involved client-facing work or project management; eagerness to work alongside our clients; business awareness and an ability to gauge the commercial value of projects; outstanding written and verbal communication skills; persuasiveness when presenting to a large or important audience

  • Experience leading a team of data scientists (to deliver innovative work according to a strict timeline) as well as experience in composing a project plan, in assessing its technical feasibility, and in estimating the time to delivery

What we can offer you:

The Faculty team is diverse and distinctive, and we all come from different personal, professional and organisational backgrounds. We all have one thing in common: we are driven by a deep intellectual curiosity that powers us forward each day.

Faculty is the professional challenge of a lifetime. You’ll be surrounded by an impressive group of brilliant minds working to achieve our collective goals.

Our consultants, product developers, business development specialists, operations professionals and more all bring something unique to Faculty, and you’ll learn something new from everyone you meet.


#J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK machine learning hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise shipped ML/LLM features, robust evaluation, observability, safety/governance, cost control and measurable business impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for ML engineers, applied scientists, LLM application engineers, ML platform/MLOps engineers and AI product managers. Who this is for: ML engineers, applied ML/LLM engineers, LLM/retrieval engineers, ML platform/MLOps/SRE, data scientists transitioning to production ML, AI product managers & tech‑lead candidates targeting roles in the UK.

Why Machine Learning Careers in the UK Are Becoming More Multidisciplinary

Machine learning (ML) has moved from research labs into mainstream UK businesses. From healthcare diagnostics to fraud detection, autonomous vehicles to recommendation engines, ML underpins critical services and consumer experiences. But the skillset required of today’s machine learning professionals is no longer purely technical. Employers increasingly seek multidisciplinary expertise: not only coding, algorithms & statistics, but also knowledge of law, ethics, psychology, linguistics & design. This article explores why UK machine learning careers are becoming more multidisciplinary, how these fields intersect with ML roles, and what both job-seekers & employers need to understand to succeed in a rapidly changing landscape.

Machine Learning Team Structures Explained: Who Does What in a Modern Machine Learning Department

Machine learning is now central to many advanced data-driven products and services across the UK. Whether you work in finance, healthcare, retail, autonomous vehicles, recommendation systems, robotics, or consumer applications, there’s a need for dedicated machine learning teams that can deliver models into production, maintain them, keep them secure, efficient, fair, and aligned with business objectives. If you’re hiring for or applying to ML roles via MachineLearningJobs.co.uk, this article will help you understand what roles are typically present in a mature machine learning department, how they collaborate through project lifecycles, what skills and qualifications UK employers look for, what the career paths and salaries are, current trends and challenges, and how to build an effective ML team.