Senior Data Scientist (UK)

TWG Global AI
City of London
19 hours ago
Applications closed

Related Jobs

View all jobs

Senior Data Scientist

Senior Data Scientist

Senior Data Scientist

Senior Data Scientist

Senior Data Scientist

Senior Data Scientist

Overview

This job is brought to you by Jobs/Redefined, the UK's leading over-50s age inclusive jobs board.


At TWG Group Holdings, LLC ("TWG Global"), we drive innovation and business transformation across a range of industries, including financial services, insurance, technology, media, and sports, by leveraging data and AI as core assets. Our AI-first, cloud-native approach delivers real-time intelligence and interactive business applications, empowering informed decision-making for both customers and employees.


We prioritize responsible data and AI practices, ensuring ethical standards and regulatory compliance. Our decentralized structure enables each business unit to operate autonomously, supported by a central AI Solutions Group, while strategic partnerships with leading data and AI vendors fuel game-changing efforts in marketing, operations, and product development.


You will collaborate with management to advance our data and analytics transformation, enhance productivity, and enable agile, data-driven decisions. By leveraging relationships with top tech startups and universities, you will help create competitive advantages and drive enterprise innovation.


At TWG Global, your contributions will support our goal of sustained growth and superior returns, as we deliver rare value and impact across our businesses.


The Role

As a Senior Associate, Data Scientist, you\'ll work alongside experienced data scientists and ML engineers to design, develop, and apply data-driven models and analyses that deliver measurable business value. Reporting to the Executive Director of AI Science, you\'ll gain hands-on experience working on impactful projects across the enterprise, applying advanced analytics and machine learning to areas such as financial services, insurance, and operations optimization. This is a high-growth opportunity for someone with early industry experience (or strong academic grounding) in data science and applied statistics, eager to deepen their expertise and grow within a dynamic AI team working at the frontier of applied analytics and machine learning.


Responsibilities

  • Contribute to the development of predictive and statistical models addressing business-critical challenges across diverse domains.
  • Conduct exploratory data analysis, feature engineering, and hypothesis testing to uncover patterns and support model development.
  • Collaborate with senior data scientists and ML engineers to refine models, improve accuracy, and enhance interpretability.
  • Support the design and evaluation of experiments and A/B tests, ensuring rigorous measurement of impact.
  • Clean, transform, and prepare data from diverse sources, ensuring high-quality datasets for analysis.
  • Build dashboards, reports, and visualizations that communicate insights clearly to technical and non-technical stakeholders.
  • Stay current with emerging data science methods and tools (e.g., generative AI, LLMs, causal inference) and apply them through prototyping.
  • Contribute to the team\'s knowledge base by documenting workflows and sharing best practices.

Requirements

  • 5+ years of experience applying data science or advanced analytics in a professional setting.
  • Solid understanding of statistical modeling, machine learning fundamentals, and experimental design.
  • Experience with predictive modeling techniques such as regression, classification, clustering, or time-series forecasting.
  • Proficiency in Python and experience with data science libraries (e.g., Pandas, NumPy, scikit-learn, XGBoost, PyTorch, TensorFlow).
  • Strong experience with SQL and data manipulation across large datasets.
  • Familiarity with data visualization tools (e.g., Matplotlib, Seaborn, Plotly, Tableau, or Power BI). Exposure to modern collaborative data platforms (e.g., Databricks, Snowflake, Palantir Foundry) is a plus.
  • Excellent problem-solving skills, eagerness to learn, and ability to work in fast-paced, evolving environments.
  • Strong written and verbal communication skills, with the ability to translate technical findings into business recommendations.
  • Bachelor\'s or Master\'s degree in Data Science, Statistics, Computer Science, Economics, or another quantitative discipline.

Preferred experience

  • Hands-on experience with Palantir platforms (Foundry, AIP, Ontology), including developing analytical workflows and deploying insights within enterprise environments.
  • PhD in Data Science, Statistics, Computer Science, or a related quantitative field. Publications in top data science / ML conferences or journals (e.g., NeurIPS, ICML, KDD, ACL, or similar).
  • Open-source contributions to the data science or ML community (libraries, notebooks, packages, or tutorials). Experience presenting research or applied work at meetups, workshops, or industry conferences.
  • Familiarity with vector databases (FAISS, Pinecone, Milvus, Weaviate) and LLM application frameworks.
  • Cloud or AI/ML certifications (e.g., AWS Machine Learning Specialty, Google Professional Data Engineer, Azure AI Engineer) are a plus.

Benefits

  • Work at the forefront of AI/ML innovation in life insurance, annuities, and financial services.
  • Drive AI transformation for some of the most sophisticated financial entities.
  • Competitive compensation, benefits, future equity options, and leadership opportunities.

This is a hybrid position based in the United Kingdom.


We offer a competitive base pay + a discretionary bonus will be provided as part of the compensation package, in addition to a full range of medical, financial, and/or other benefits.


TWG is an equal opportunity employer, and all qualified applicants will receive consideration for employment without regard to race, color, religion, gender, sexual orientation, gender identity, national origin, disability, or status as a protected veteran.


#J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Neurodiversity in Machine Learning Careers: Turning Different Thinking into a Superpower

Machine learning is about more than just models & metrics. It’s about spotting patterns others miss, asking better questions, challenging assumptions & building systems that work reliably in the real world. That makes it a natural home for many neurodivergent people. If you live with ADHD, autism or dyslexia, you may have been told your brain is “too distracted”, “too literal” or “too disorganised” for a technical career. In reality, many of the traits that can make school or traditional offices hard are exactly the traits that make for excellent ML engineers, applied scientists & MLOps specialists. This guide is written for neurodivergent ML job seekers in the UK. We’ll explore: What neurodiversity means in a machine learning context How ADHD, autism & dyslexia strengths map to ML roles Practical workplace adjustments you can ask for under UK law How to talk about neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in ML – & how to turn “different thinking” into a genuine career advantage.

Machine Learning Hiring Trends 2026: What to Watch Out For (For Job Seekers & Recruiters)

As we move into 2026, the machine learning jobs market in the UK is going through another big shift. Foundation models and generative AI are everywhere, companies are under pressure to show real ROI from AI, and cloud costs are being scrutinised like never before. Some organisations are slowing hiring or merging teams. Others are doubling down on machine learning, MLOps and AI platform engineering to stay competitive. The end result? Fewer fluffy “AI” roles, more focused machine learning roles with clear ownership and expectations. Whether you are a machine learning job seeker planning your next move, or a recruiter trying to build ML teams, understanding the key machine learning hiring trends for 2026 will help you stay ahead.

Machine Learning Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK machine learning hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise shipped ML/LLM features, robust evaluation, observability, safety/governance, cost control and measurable business impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for ML engineers, applied scientists, LLM application engineers, ML platform/MLOps engineers and AI product managers. Who this is for: ML engineers, applied ML/LLM engineers, LLM/retrieval engineers, ML platform/MLOps/SRE, data scientists transitioning to production ML, AI product managers & tech‑lead candidates targeting roles in the UK.