National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Applied AI ML Associate - Machine Learning Scientist – Machine Learning for Technology

JPMorgan Chase & Co.
London
3 months ago
Applications closed

Related Jobs

View all jobs

Applied AI ML - Senior Associate - Machine Learning Engineer

Applied AI ML Senior Associate - Machine Learning Center of Excellence - Time Series Reinforcement Learning

Lead Applied AI Engineer

Senior Associate AI Researcher - Natural Language Processing

Lead Machine Learning Engineer, Associate Director 1

Lead Machine Learning Engineer, Associate Director, London

Join the elite Applied Innovation of AI (AI2) team at JP Morgan Chase, strategically located within the CTO office.


As a Machine Learning Specialist within the JPMC businesses, you will be responsible for addressing business-critical priorities using innovative machine learning techniques. You will work closely with stakeholders to execute projects that support the growth of the business and explore novel challenges that could revolutionize the way the bank operates. Your role will involve applying advanced machine learning methods to a range of complex tasks, such as data mining, text understanding, anomaly detection, and generative AI. You will collaborate with business, technologists, and control partners to deploy solutions into production. Additionally, your responsibilities will include researching new methods, developing models, and contributing to reusable code and components.

Job Responsibilities:

Research and explore new machine learning methods through independent study, attending conferences, and experimentation. Develop state-of-the-art machine learning models to solve real-world problems in Cybersecurity, Software, and Technology Infrastructure. Collaborate with partner teams to deploy solutions into production. Drive firmwide initiatives by developing large-scale frameworks to accelerate the application of machine learning models. Contribute to reusable code and components shared internally and externally.

Required Qualifications, Capabilities, and Skills:

PhD in a quantitative discipline (., Computer Science, Electrical Engineering, Mathematics, Operations Research, Optimization, or Data Science) or an MS with industry or research experience. Hands-on experience and solid understanding of machine learning and deep learning methods. Extensive experience with machine learning and deep learning toolkits (., TensorFlow, PyTorch, NumPy, Scikit-Learn, Pandas). Scientific thinking and the ability to invent. Ability to design experiments and training frameworks, and evaluate metrics for model performance aligned with business goals. Experience with big data and scalable model training. Solid written and spoken communication to effectively communicate technical concepts and results. Curious, hardworking, detail-oriented, and motivated by complex analytical problems. Ability to work both independently and in collaborative team environments.

Preferred Qualifications, Capabilities, and Skills:

Experience with A/B experimentation and data/metric-driven product development. Experience with cloud-native deployment in a large-scale distributed environment. Knowledge of large language models (LLMs) and accompanying toolsets (., Langchain, Vector databases, open-source Hugging Face Models). Knowledge in Reinforcement Learning or Meta Learning. Published research in areas of Machine Learning, Deep Learning, or Reinforcement Learning at a major conference or journal. Ability to develop and debug production-quality code. Familiarity with continuous integration models and unit test development.
National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

10 Machine‑Learning Recruitment Agencies in the UK You Should Know (2025 Job‑Seeker Guide)

With deep‑learning projects now integral across healthcare, finance and tech, UK demand for machine‑learning talent is booming. Lightcast shows +50 % YoY growth in UK adverts referencing “machine learning,” “deep learning,” “computer vision” or “reinforcement learning” in Q1 2025. Monthly vacancies sit around 1,800–2,100, but certified ML specialists number fewer than 15,000. Specialist recruiters help candidates access hidden roles, competitive packages, and structured interview prep. How we screened: Only UK‑registered agencies with clear ML/AI or Data practices Agencies that posted ≥ 5 UK ML roles between March and June 2025

Machine Learning Jobs Skills Radar 2026: Emerging Tools, Frameworks & Platforms to Learn Now

Machine learning is no longer confined to academic research—it's embedded in how UK companies detect fraud, recommend content, automate processes & forecast risk. But with model complexity rising and LLMs transforming workflows, employers are demanding new skills from machine learning professionals. Welcome to the Machine Learning Jobs Skills Radar 2026—your annual guide to the top languages, frameworks, platforms & tools shaping machine learning roles in the UK. Whether you're an aspiring ML engineer or a mid-career data scientist, this radar shows what to learn now to stay job-ready in 2026.

How to Find Hidden Machine Learning Jobs in the UK Using Professional Bodies like BCS, Turing Society & More

Machine learning (ML) continues to transform sectors across the UK—from fintech and retail to healthtech and autonomous systems. But while the demand for ML engineers, researchers, and applied scientists is growing, many of the best opportunities are never posted on traditional job boards. So, where do you find them? The answer lies in professional bodies, academic-industry networks, and tight-knit ML communities. In this guide, we’ll show you how to uncover hidden machine learning jobs in the UK by engaging with groups like the BCS (The Chartered Institute for IT), Turing Society, Alan Turing Institute, and others. We’ll explore how to use member directories, CPD events, SIGs (Special Interest Groups), and community projects to build connections, gain early access to job leads, and raise your professional profile in the ML ecosystem.