AI Solutions Architect (R122902 AI Solutions Architect) (Basé à London)

Jobleads
London
1 month ago
Create job alert

AI Solutions Architect (R122902 AI Solutions Architect)

Employer:Mars
Location:London, United Kingdom
Salary:Competitive
Closing date:27 Apr 2025

Job Description:
As anAI Solutions Architectat Mars Global Services, you will lead the design, integration, and deployment of AI-powered solutions to enhance the Associate experience, with a strong focus on Generative AI (GenAI) and Conversational AI. In this key role, you will drive AI transformation initiatives within a globally recognized brand, influencing enterprise-wide adoption of AI solutions. Your work will be pivotal in ensuring the successful implementation of scalable and secure AI solutions across Mars' enterprise platforms, while driving AI adoption across the organization.

What are we looking for?

  • Bachelor's degree in Computer Science, Artificial Intelligence, Data Science, or a related field (or equivalent industry experience).
  • 7+ years of experience in AI/ML solution development, architecture, and enterprise integration.
  • Expertise in LLMs, NLP/NLU, Conversational/GenAI, AI Search, and Virtual Agents.
  • Proficiency in programming & AI development (Python, OpenAI APIs, MLOps frameworks).
  • Nice-to-Haves:
    • Experience with multilingual AI models for global translation.
    • AI certifications (e.g., Azure AI Engineer, Google ML Engineer, TOGAF).

What would be your key responsibilities?

  • Design and implement enterprise-scale AI solutions, focusing on Conversational AI, Generative AI, and AI-powered automation to enhance business operations.
  • Define and maintain the technical product roadmap, ensuring scalability, security, compliance, and alignment with business goals.
  • Develop and deploy custom AI models (NLU, NLG, AI Search, Virtual Agents) and integrate with SaaS platforms (e.g., ServiceNow, Workday, OpenAI) to improve user experience.
  • Establish AI governance frameworks to align with Responsible AI practices and ensure compliance with data privacy laws (e.g., GDPR, CCPA).
  • Drive adoption of GenAI-powered tools for self-service automation, analytics, and search capabilities, while providing leadership and mentorship to AI and engineering teams.
  • Identify and mitigate AI risks (e.g., model drift, data bias) and continuously refine AI models and solutions through performance monitoring and feedback loops.
  • Expertise in AI/ML algorithms, enterprise-scale applications, and SaaS AI platforms (e.g., ServiceNow Now Assist, Workday Illuminate, SAP, Microsoft CoPilot, OpenAI, Mistral), with experience integrating AI solutions with enterprise systems (Microsoft, Workday, SAP) to enable connected experiences across search and conversational AI.

What can you expect from Mars?

  • Work with over 130,000 diverse and talented Associates, all guided by the Five Principles.
  • Join a purpose-driven company, where we're striving to build the world we want tomorrow, today.
  • Best-in-class learning and development support from day one, including access to our in-house Mars University.
  • An industry competitive salary and benefits package, including company bonus.

Mars is an equal opportunity employer and all qualified applicants will receive consideration for employment without regard to race, color, religion, sex, sexual orientation, gender identity, national origin, disability status, protected veteran status, or any other characteristic protected by law. If you need assistance or an accommodation during the application process because of a disability, it is available upon request.

#J-18808-Ljbffr

Related Jobs

View all jobs

Solution Architect for Growth

ML/AI Software Engineer

ML/AI Software Engineer

▷ Urgent! Solutions Architect

Microsoft Fabric Architect - Azure - Data Solutions Architect

Data & AI Solution Architect, Azure, Remote

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine‑Learning Jobs for Non‑Technical Professionals: Where Do You Fit In?

The Model Needs More Than Math When ChatGPT went viral and London start‑ups raised seed rounds around “foundation models,” many professionals asked, “Do I need to learn PyTorch to work in machine learning?” The answer is no. According to the Turing Institute’s UK ML Industry Survey 2024, 39 % of advertised ML roles focus on strategy, compliance, product or operations rather than writing code. As models move from proof‑of‑concept to production, demand surges for specialists who translate algorithms into business value, manage risk and drive adoption. This guide reveals the fastest‑growing non‑coding ML roles, the transferable skills you may already have, real transition stories and a 90‑day action plan—no gradient descent necessary.

Quantexa Machine‑Learning Jobs in 2025: Your Complete UK Guide to Joining the Decision‑Intelligence Revolution

Money‑laundering rings, sanctioned entities, synthetic identities—complex risks hide in plain sight inside data. Quantexa, a London‑born scale‑up now valued at US $2.2 bn (Series F, August 2024), solves that problem with contextual decision‑intelligence (DI): graph analytics, entity resolution and machine learning stitched into a single platform. Banks, insurers, telecoms and governments from HSBC to HMRC use Quantexa to spot fraud, combat financial crime and optimise customer engagement. With the launch of Quantexa AI Studio in February 2025—bringing generative AI co‑pilots and large‑scale Graph Neural Networks (GNNs) to the platform—the company is hiring at record pace. The Quantexa careers portal lists 450+ open roles worldwide, over 220 in the UK across data science, software engineering, ML Ops and client delivery. Whether you are a graduate data scientist fluent in Python, a Scala veteran who loves Spark or a solutions architect who can turn messy data into knowledge graphs, this guide explains how to land a Quantexa machine‑learning job in 2025.

Machine Learning vs. Deep Learning vs. MLOps Jobs: Which Path Should You Choose?

Machine Learning (ML) continues to transform how businesses operate, from personalised product recommendations to automated fraud detection. As ML adoption accelerates in nearly every industry—finance, healthcare, retail, automotive, and beyond—the demand for professionals with specialised ML skills is surging. Yet as you browse Machine Learning jobs on www.machinelearningjobs.co.uk, you may encounter multiple sub-disciplines, such as Deep Learning and MLOps. Each of these fields offers unique challenges, requires a distinct skill set, and can lead to a rewarding career path. So how do Machine Learning, Deep Learning, and MLOps differ? And which area best aligns with your talents and aspirations? This comprehensive guide will define each field, highlight overlaps and differences, discuss salary ranges and typical responsibilities, and explore real-world examples. By the end, you’ll have a clearer vision of which career track suits you—whether you prefer building foundational ML models, pushing the boundaries of neural network performance, or orchestrating robust ML pipelines at scale.