Account Manager - Cargo

Ki
London
1 week ago
Create job alert

Who are we?


Look at the latest headlines and you will see something Ki insures. Think space shuttles, world tours, wind farms, and even footballers’ legs.

Ki’s mission is simple. Digitally disrupt and revolutionise a 335-year-old market. Working with Google and UCL, Ki has created a platform that uses algorithms, machine learning and large language models to give insurance brokers quotes in seconds, rather than days.

Ki is proudly the biggest global algorithmic insurance carrier. It is the fastest growing syndicate in the Lloyd's of London market, and the first ever to make $100m in profit in 3 years.

Ki’s teams have varied backgrounds and work together in an agile, cross-functional way to build the very best experience for its customers. Ki has big ambitions but needs more excellent minds to challenge the status-quo and help it reach new horizons.


What you will be working on


You’ll work closely with the wider Distribution team, Portfolio Underwriting team and Portfolio Management team, and be the key driver in the execution of Ki’s underwriting and distribution strategy, converting renewal and new opportunities and increasing Ki’s market presence and reputation as the market-leading Lloyd’s digital syndicate. Working closely with our Cargo Underwriter, you'll act as the point person for driving our underwriting and distribution strategies, while developing renewal and new opportunities to enhance our market presence.


Whilst acting as the primary contact for partner brokers, fostering strong relationships through regular meetings to support business growth, you’ll also lead business development by establishing clear team objectives and effectively manage a pipeline of opportunities using CRM tools to create tailored strategies.


Our culture


Inclusion & Diversity is at the heart of our business at Ki. We recognise that diversity in age, race, gender, ethnicity, sexual orientation, physical ability, thought and social background bring richness to our working environment. No matter who you are, where you’re from, how you think, or who you love, we believe you should be you.


You’ll get a highly competitive remuneration and benefits package. This is kept under constant review to make sure it stays relevant. We understand the power of saying thank you and take time to acknowledge and reward extraordinary effort by teams or individuals.

If this sounds like a role and a culture that appeals to you, let us know – apply here.

Related Jobs

View all jobs

Account Manager - Cargo

Sales Account Manager

Technical Account Manager , Strategic Industries - (Media & Entertainment)

Senior IT Sales Account Manager - Solutions, Cloud, Data, Cyber

Customer Account Co-ordinator

VP Client Services EMEA & APAC

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Tips for Staying Inspired: How Machine Learning Pros Fuel Creativity and Innovation

Machine learning (ML) continues to reshape industries—from personalised e-commerce recommendations and autonomous vehicles to advanced healthcare diagnostics and predictive maintenance in manufacturing. Yet behind every revolutionary model lies a challenging and sometimes repetitive process: data cleaning, hyperparameter tuning, infrastructure management, stakeholder communications, and constant performance monitoring. It’s no wonder many ML professionals can experience creative fatigue or get stuck in the daily grind. So, how do machine learning experts keep their spark alive and continually generate fresh ideas? Below, you’ll find ten actionable strategies that successful ML engineers, data scientists, and research scientists use to stay innovative and push boundaries. Whether you’re an experienced practitioner or just breaking into the field, these tips can help you fuel creativity and discover new angles for solving complex problems.

Top 10 Machine Learning Career Myths Debunked: Key Facts for Aspiring Professionals

Machine learning (ML) has become one of the hottest fields in technology—touching everything from recommendation engines and self-driving cars to language translation and healthcare diagnostics. The immense potential of ML, combined with attractive compensation packages and high-profile success stories, has spurred countless professionals and students to explore this career path. Yet, despite the boom in demand and innovation, machine learning is not exempt from myths and misconceptions. At MachineLearningJobs.co.uk, we’ve had front-row seats to the real-life career journeys and hiring needs in this field. We see, time and again, that outdated assumptions—like needing a PhD from a top university or that ML is purely about deep neural networks—can mislead new entrants and even deter seasoned professionals from making a successful transition. If you’re curious about a career in machine learning or looking to take your existing ML expertise to the next level, this article is for you. Below, we debunk 10 of the most persistent myths about machine learning careers and offer a clear-eyed view of the essential skills, opportunities, and realistic paths forward. By the end, you’ll be better equipped to make informed decisions about your future in this dynamic and rewarding domain.

Global vs. Local: Comparing the UK Machine Learning Job Market to International Landscapes

How to evaluate opportunities, salaries, and work culture in machine learning across the UK, the US, Europe, and Asia Machine learning (ML) has rapidly transcended the research labs of academia to become a foundational pillar of modern technology. From recommendation engines and autonomous vehicles to fraud detection and personalised healthcare, machine learning techniques are increasingly ubiquitous, transforming how organisations operate. This surge in applications has fuelled an extraordinary global demand for ML professionals—data scientists, ML engineers, research scientists, and more. In this article, we’ll examine how the UK machine learning job market compares to prominent international hubs, including the United States, Europe, and Asia. We’ll explore hiring trends, salary ranges, workplace cultures, and the nuances of remote and overseas roles. Whether you’re a fresh graduate aiming to break into the field, a software engineer with an ML specialisation, or a seasoned professional seeking your next challenge, understanding the global ML landscape is essential for making an informed career move. By the end of this overview, you’ll be equipped with insights into which regions offer the best blend of salaries, work-life balance, and cutting-edge projects—plus practical tips on how to succeed in a domain that’s constantly evolving. Let’s dive in.