Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

UKRI Doctoral Network Researcher

Imperial College London
London
11 months ago
Applications closed

Related Jobs

View all jobs

Research Fellows and Postdocs in Probabilistic Machine Learning and Bayesian Inference

UCI Policy Data Scientist (Fixed Term)

UCI Policy Data Scientist (Fixed Term)

EPSRC CDT Machine Learning Systems Fully-Funded PhD Programme

Applicants are invited to apply for a Research Assistant position funded by UKRI to develop a novel method for dynamic voltage support and customer privacy preserving edge computing. The position involves undertaking full time research in power distribution system computation control and data analysis. In particular, the objective of this research programme is to lay the foundations of a new, model and data-driven, power distribution control and secured operation in the presence of renewables. The methodology involves global model as well as data driven optimisation for reliable digital energy services.


You will carry out research programmes in power distribution system model, analysis, control and optimisation but not limited to so called Machine Learning or Cyber security application in energy network.


You must have a good master’s degree in electrical engineering, with Power and Control Engineering major or (or equivalent) for appointment at Research Assistant level and have previous experience in power engineering with emphasis on power distribution system model, analysis and control and large data processing in power engineering.The position requires the candidate meets the academic requirement to register for a PhD at Imperial College London. The candidate needs to spend six months of secondment in the consortium partner’s site in Denmark, Spain and the Netherlands.
• The opportunity to continue your career at a world-leading institution• Sector-leading salary and remuneration package (including 38 days off a year)

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Hiring Trends 2026: What to Watch Out For (For Job Seekers & Recruiters)

As we move into 2026, the machine learning jobs market in the UK is going through another big shift. Foundation models and generative AI are everywhere, companies are under pressure to show real ROI from AI, and cloud costs are being scrutinised like never before. Some organisations are slowing hiring or merging teams. Others are doubling down on machine learning, MLOps and AI platform engineering to stay competitive. The end result? Fewer fluffy “AI” roles, more focused machine learning roles with clear ownership and expectations. Whether you are a machine learning job seeker planning your next move, or a recruiter trying to build ML teams, understanding the key machine learning hiring trends for 2026 will help you stay ahead.

Machine Learning Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK machine learning hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise shipped ML/LLM features, robust evaluation, observability, safety/governance, cost control and measurable business impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for ML engineers, applied scientists, LLM application engineers, ML platform/MLOps engineers and AI product managers. Who this is for: ML engineers, applied ML/LLM engineers, LLM/retrieval engineers, ML platform/MLOps/SRE, data scientists transitioning to production ML, AI product managers & tech‑lead candidates targeting roles in the UK.

Why Machine Learning Careers in the UK Are Becoming More Multidisciplinary

Machine learning (ML) has moved from research labs into mainstream UK businesses. From healthcare diagnostics to fraud detection, autonomous vehicles to recommendation engines, ML underpins critical services and consumer experiences. But the skillset required of today’s machine learning professionals is no longer purely technical. Employers increasingly seek multidisciplinary expertise: not only coding, algorithms & statistics, but also knowledge of law, ethics, psychology, linguistics & design. This article explores why UK machine learning careers are becoming more multidisciplinary, how these fields intersect with ML roles, and what both job-seekers & employers need to understand to succeed in a rapidly changing landscape.