Technical Support Engineer

Dataiku
1 month ago
Applications closed

Related Jobs

View all jobs

Data Engineer/Technologist Intern

RF Design Engineer - LNAs, Design from LF to X Band

Data Scientist Consultant

Data Science Business Analyst

Technical Engineer

Data Engineering Lead / Data Architect

At Dataiku, we're not just adapting to the AI revolution, we're leading it. Since our beginning in Paris in 2013, we've been pioneering the future of AI with a platform that makes data actionable and accessible. With over 1,000 teammates across 25 countries and backed by a renowned set of investors, we're the architects of Everyday AI, enabling data experts and domain experts to work together to build AI into their daily operations, from advanced analytics to Generative AI. 

What to know about the Dataiku Support Team

At Dataiku, the Support organization is a fully remote team focused on enabling our customers and helping them work through any technical issues or questions related to our Everyday AI Platform (DSS). We are a rapidly scaling and globally distributed team, with members spanning 10+ countries and across 3 major continents. Our focus is to take our growth to the next stage by building out an enterprise-grade global support function. 

How you’ll make an impact 

We are looking for an experienced technical support engineer who is comfortable working in a complex and dynamic environment and who can help contribute to the growth of our global support function as we continue to scale up our operations. As a Technical Support Engineer, you will help our EMEA and global customers solve their wide range of technical issues with Dataiku, such as installation, security, and integration with other big data technologies. You will also collaborate with various internal teams to solve and escalate customer issues as needed.

Some expected outcomes for this role 

Help EMEA and global customers solve their technical issues with Dataiku through a variety of communication channels

Communicate with our R&D team to solve complex issues and/or share feedback from our EMEA customers for future product improvement

Work with other customer-facing teams when escalating or rerouting issues to help ensure a proper and efficient / timely resolution

Document knowledge in the form of technical articles and contribute to knowledge bases or forums within specific areas of expertise

Occasionally wear multiple hats and help out with other activities in a fast-paced and dynamic startup team environment

What you’ll need to be successful 

At least 3 years of experience in a client-facing engineering or technical role, ideally involving a complex and rapidly evolving software/product

Experience with cloud platforms such as AWS, Azure, and GCP

Experience with Docker and Kubernetes

Collaborative and helpful mindset with a focus on always working as a team

A strong competency in technical problem solving with demonstrated experience performing advanced log analysis, debugging, and reproducing errors

Proficiency working with Unix-based operating systems

Experience with relational databases (or data warehouses like Snowflake) and SQL

Ability to read and write Python or R code

What will make you stand out

Experience with big data technologies, such as Hadoop or Spark 

Experience with authentication and authorization systems such as LDAP, SAML, and Kerberos

Experience with ML models and LLMs

What does the hiring process look like? #LI-Remote #LI-AN1

Initial call with a member of our Technical Recruiting team

Video call with the Technical Support Manager

Technical Assessment to show your skills (Home Test)

Debrief of your Tech Assessment with Support Team member

Final Interview with the VP Technical Support

What are you waiting for!At Dataiku, you'll be part of a journey to shape the ever-evolving world of AI. We're not just building a product; we're crafting the future of AI. If you're ready to make a significant impact in a company that values innovation, collaboration, and your personal growth, we can't wait to welcome you to Dataiku! And if you’d like to learn even more about working here, you can visit our . Our practices are rooted in the idea that everyone should be treated with dignity, decency and fairness. Dataiku also believes that a diverse identity is a source of strength and allows us to optimize across the many dimensions that are needed for our success. Therefore, we are proud to be an equal opportunity employer. All employment practices are based on business needs, without regard to race, ethnicity, gender identity or expression, sexual orientation, religion, age, neurodiversity, disability status, citizenship, veteran status or any other aspect which makes an individual unique or protected by laws and regulations in the locations where we operate. This applies to all policies and procedures related to recruitment and hiring, compensation, benefits, performance, promotion and termination and all other conditions and terms of employment. If you need assistance or an accommodation, please contact us at:Protect yourself from fraudulent recruitment activityDataiku will never ask you for payment of any type during the interview or hiring process. Other than our video-conference application, Zoom, we will also never ask you to make purchases or download third-party applications during the process. If you experience something out of the ordinary or suspect fraudulent activity, please review our page on identifying and reporting fraudulent activity

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Portfolio Projects That Get You Hired for Machine Learning Jobs (With Real GitHub Examples)

In today’s data-driven landscape, the field of machine learning (ML) is one of the most sought-after career paths. From startups to multinational enterprises, organisations are on the lookout for professionals who can develop and deploy ML models that drive impactful decisions. Whether you’re an aspiring data scientist, a seasoned researcher, or a machine learning engineer, one element can truly make your CV shine: a compelling portfolio. While your CV and cover letter detail your educational background and professional experiences, a portfolio reveals your practical know-how. The code you share, the projects you build, and your problem-solving process all help prospective employers ascertain if you’re the right fit for their team. But what kinds of portfolio projects stand out, and how can you showcase them effectively? This article provides the answers. We’ll look at: Why a machine learning portfolio is critical for impressing recruiters. How to select appropriate ML projects for your target roles. Inspirational GitHub examples that exemplify strong project structure and presentation. Tangible project ideas you can start immediately, from predictive modelling to computer vision. Best practices for showcasing your work on GitHub, personal websites, and beyond. Finally, we’ll share how you can leverage these projects to unlock opportunities—plus a handy link to upload your CV on Machine Learning Jobs when you’re ready to apply. Get ready to build a portfolio that underscores your skill set and positions you for the ML role you’ve been dreaming of!

Machine Learning Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

Machine learning is fuelling innovation across every industry, from healthcare to retail to financial services. As organisations look to harness large datasets and predictive algorithms to gain competitive advantages, the demand for skilled ML professionals continues to soar. Whether you’re aiming for a machine learning engineer role or a research scientist position, strong interview performance can open doors to dynamic projects and fulfilling careers. However, machine learning interviews differ from standard software engineering ones. Beyond coding proficiency, you’ll be tested on algorithms, mathematics, data manipulation, and applied problem-solving skills. Employers also expect you to discuss how to deploy models in production and maintain them effectively—touching on MLOps or advanced system design for scaling model inferences. In this guide, we’ve compiled 30 real coding & system‑design questions you might face in a machine learning job interview. From linear regression to distributed training strategies, these questions aim to test your depth of knowledge and practical know‑how. And if you’re ready to find your next ML opportunity in the UK, head to www.machinelearningjobs.co.uk—a prime location for the latest machine learning vacancies. Let’s dive in and gear up for success in your forthcoming interviews.

Negotiating Your Machine Learning Job Offer: Equity, Bonuses & Perks Explained

How to Secure a Compensation Package That Matches Your Technical Mastery and Strategic Influence in the UK’s ML Landscape Machine learning (ML) has rapidly shifted from an emerging discipline to a mission-critical function in modern enterprises. From optimising e-commerce recommendations to powering autonomous vehicles and driving innovation in healthcare, ML experts hold the keys to transformative outcomes. As a mid‑senior professional in this field, you’re not only crafting sophisticated algorithms; you’re often guiding strategic decisions about data pipelines, model deployment, and product direction. With such a powerful impact on business results, companies across the UK are going beyond standard salary structures to attract top ML talent. Negotiating a compensation package that truly reflects your value means looking beyond the numbers on your monthly payslip. In addition to a competitive base salary, you could be securing equity, performance-based bonuses, and perks that support your ongoing research, development, and growth. However, many mid‑senior ML professionals leave these additional benefits on the table—either because they’re unsure how to negotiate them or they simply underestimate their long-term worth. This guide explores every critical aspect of negotiating a machine learning job offer. Whether you’re joining an AI-focused start-up or a major tech player expanding its ML capabilities, understanding equity structures, bonus schemes, and strategic perks will help you lock in a package that matches your technical expertise and strategic influence. Let’s dive in.