Data Engineer

Akkodis
Stevenage
5 days ago
Create job alert

Akkodis is a global leader in engineering, technology, and R&D, harnessing the power of connected data to drive digital transformation and innovation for a smarter, more sustainable future. As part of the Adecco Group, Akkodis combines the expertise of AKKA and Modis, with over 50,000 engineers and digital specialists across 30 countries in North America, EMEA, and APAC. Our teams bring extensive cross-sector knowledge in critical technology areas such as mobility, software services, robotics, simulations, cybersecurity, AI, and data analytics, enabling clients to tackle complex challenges in today’s rapidly evolving markets.


Scope:

Akkodis is launching a new technical delivery team to drive a UK national program in collaboration with key partners, designed to transform and future-proof the central government’s workforce. By leveraging cutting-edge technology, strategic partnerships, and a comprehensive SaaS-based platform, this program will create an advanced, candidate-centric experience tailored to meet tomorrow’s public sector skill demands.


This high-impact initiative offers a unique opportunity to join a team dedicated to building a scalable, data-driven recruitment ecosystem. Through redesigning, building, and rolling out a sophisticated Big Data system, our diverse roles span across architecture, project management, data analytics, development, and technical support, giving you the chance to shape a dynamic, next-gen digital infrastructure.


You’ll be integral to our mission of crafting a seamless, powerful platform that empowers the public sector with the talent to navigate an evolving digital landscape.


Role:

As part of this mission, the Data Engineer role focuses on the planning, execution, and management of data migration projects. Data Engineer are responsible for transferring data from legacy systems to new platforms, ensuring accuracy, consistency, and adherence to data integrity standards.


Analyse existing data structures and understand business requirements for data migration.

Design and implement robust data migration strategies.

Develop scripts and processes to automate data extraction, transformation, and loading (ETL) processes.

Work closely with stakeholders, including business users and IT teams, to ensure data requirements are met, and migrations proceed without disruption to business operations.


Responsibilities:

  • Plan, coordinate, and execute data migration projects within set timelines.
  • Design and build ETL solutions, ensuring data quality and integrity throughout the migration process.
  • Troubleshoot and resolve data-related issues promptly to minimise disruption.
  • Collaborate with various teams to align migration processes with organisational goals and regulatory standards.


  • Proficiency in AWS ETL technologies, including Glue, Data Sync, DMS, Step Functions, Redshift, DynamoDB, Athena, Lambda, RDS, EC2 and S3 Datalake, CloudWatch for building and optimizing ETL pipelines and data migration workflows.
  • Working knowledge of Azure data engineering tools, including ADF (Azure Data Factory), Azure DB, Azure Synapse, Azure Data lake and Azure Monitor providing added flexibility for diverse migration and integration projects.
  • Prior experience with tools such as MuleSoft, Boomi, Informatica, Talend, SSIS, or custom scripting languages (Python, PySpark, SQL) for data extraction and transformation.
  • Prior experience with Data warehousing and Data modelling (Star Schema or Snowflake Schema).
  • Skilled in security frameworks such as GDPR, HIPAA, ISO 27001, NIST, SOX, and PII, with expertise in IAM, KMS, and RBAC implementation.
  • Cloud automation and orchestration tools like Terraform and Airflow.
  • Strong analytical skills to assess data quality, identify inconsistencies, and troubleshoot data migration issues.
  • Understanding of database management systems (SQL Server, Oracle, MySQL and NoSQL) and SQL query optimisation.
  • Ability to plan and execute data migration projects, manage timelines, and coordinate with stakeholders.
  • Precision in handling large volumes of data and ensuring accuracy during migration processes.
  • Effective communication skills to convey technical concepts and updates to diverse audiences, including non-technical stakeholders.
  • Cloud certifications like AWS and Azure are preferred.



Required Experience:

  • Proven experience in data migration, data management, or ETL development.
  • Experience working with ETL tools and database management systems.
  • Familiarity with data integrity and compliance standards relevant to data migration.


Required education

Bachelor’s degree in Information Technology, Computer Science, Data Science, or a related field.

Related Jobs

View all jobs

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Neurodiversity in Machine Learning Careers: Turning Different Thinking into a Superpower

Machine learning is about more than just models & metrics. It’s about spotting patterns others miss, asking better questions, challenging assumptions & building systems that work reliably in the real world. That makes it a natural home for many neurodivergent people. If you live with ADHD, autism or dyslexia, you may have been told your brain is “too distracted”, “too literal” or “too disorganised” for a technical career. In reality, many of the traits that can make school or traditional offices hard are exactly the traits that make for excellent ML engineers, applied scientists & MLOps specialists. This guide is written for neurodivergent ML job seekers in the UK. We’ll explore: What neurodiversity means in a machine learning context How ADHD, autism & dyslexia strengths map to ML roles Practical workplace adjustments you can ask for under UK law How to talk about neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in ML – & how to turn “different thinking” into a genuine career advantage.

Machine Learning Hiring Trends 2026: What to Watch Out For (For Job Seekers & Recruiters)

As we move into 2026, the machine learning jobs market in the UK is going through another big shift. Foundation models and generative AI are everywhere, companies are under pressure to show real ROI from AI, and cloud costs are being scrutinised like never before. Some organisations are slowing hiring or merging teams. Others are doubling down on machine learning, MLOps and AI platform engineering to stay competitive. The end result? Fewer fluffy “AI” roles, more focused machine learning roles with clear ownership and expectations. Whether you are a machine learning job seeker planning your next move, or a recruiter trying to build ML teams, understanding the key machine learning hiring trends for 2026 will help you stay ahead.

Machine Learning Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK machine learning hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise shipped ML/LLM features, robust evaluation, observability, safety/governance, cost control and measurable business impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for ML engineers, applied scientists, LLM application engineers, ML platform/MLOps engineers and AI product managers. Who this is for: ML engineers, applied ML/LLM engineers, LLM/retrieval engineers, ML platform/MLOps/SRE, data scientists transitioning to production ML, AI product managers & tech‑lead candidates targeting roles in the UK.