Technical Data Analyst (SQL)

Clearwater Analytics
Edinburgh
1 year ago
Applications closed

Related Jobs

View all jobs

Technical Data Analyst

Technical Data Analyst - Azure & SQL Pipelines (Hybrid)

Junior Data Analyst

Senior Data Analyst

Junior Data Analyst: Modelling, Analytics & Tech Build

Lead Data Analyst

Job Summary:

The Technical Data Analyst is responsible formaintaining investment data for clients. This role involves tasks such as analyzing and organizing raw data, building data systems and pipelines, conducting complex data analysis, and presenting information through data visualization techniques. Additionally, the analyst collaborates with clients and project management teams to grasp customer and company needs. This role requires the ability to merge data from various sources and present it in alignment with customer/company requirements, while also striving to improve data quality and reliability.

Responsibilities:

Utilize your analytical expertise to decipher and organize raw data, transforming it into valuable insights.

Build efficient and robust data systems and pipelines, ensuring seamless data flow.

Dive into complex data sets, conducting thorough analysis and delivering insightful reports on outcomes.

Showcase your findings using cutting-edge data visualization techniques, making data come to life.

Harness the power of multiple data sources, combining raw information into comprehensive and actionable insights.

Continuously explore innovative methods to improve data quality and reliability, contributing to the highest standards.

Develop and implement analytical tools and programs that empower teams to make data-driven decisions.

Collaborate closely with system architects and product development teams, fostering an environment of innovation and excellence.

Required Skills: 

Familiarity with cloud platforms and big data technologies (e.g., AWS, GCP, Azure).

Understanding of database design and data warehouse principles.

Strong understanding of investment data, good to have 

Knowledge of one or more programming languages (e.g. Java, Python, VBA).

Proficiency in data manipulation and data cleansing techniques.

Knowledge of data governance and best practices in data management.

Continuous improvement mindset for self and team.

Ability to work collaboratively in a cross-functional team environment.

Ability to work with large datasets and perform data mining tasks.

Strong computer skills, including proficiency in Microsoft Office.

Excellent attention to detail and strong documentation skills. 

Outstanding verbal and written communication skills.

Strong organisational and interpersonal skills. 

Exceptional problem-solving abilities. 

Education and Experience:

Bachelor’s degree in data analytics, statistics, accounting, computer science, or related discipline.

4+ years of relevant experience in data analytics, reporting, and visualization.

Hands-on experience with SQL and NoSQL databases

Experience with data integration and exchange, transfer, load processes.

Experience with data visualization tools such as Tableau, Power BI, or D3.js.

Familiarity with dbt/Prophecy good to have, but not essential

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

What Hiring Managers Look for First in Machine Learning Job Applications (UK Guide)

Whether you’re applying for machine learning engineer, applied scientist, research scientist, ML Ops or data scientist roles, hiring managers scan applications quickly — often making decisions before they’ve read beyond the top third of your CV. In the competitive UK market, it’s not enough to list skills. You must send clear signals of relevance, delivery, impact, reasoning and readiness for production — and do it within the first few lines of your CV or portfolio. This guide walks you through exactly what hiring managers look for first in machine learning applications, how they evaluate CVs and portfolios, and what you can do to improve your chances of getting shortlisted at every stage — from your CV and LinkedIn profile to your cover letter and project portfolio.

MLOps Jobs in the UK: The Complete Career Guide for Machine Learning Professionals

Machine learning has moved from experimentation to production at scale. As a result, MLOps jobs have become some of the most in-demand and best-paid roles in the UK tech market. For job seekers with experience in machine learning, data science, software engineering or cloud infrastructure, MLOps represents a powerful career pivot or progression. This guide is designed to help you understand what MLOps roles involve, which skills employers are hiring for, how to transition into MLOps, salary expectations in the UK, and how to land your next role using specialist platforms like MachineLearningJobs.co.uk.

The Skills Gap in Machine Learning Jobs: What Universities Aren’t Teaching

Machine learning has moved from academic research into the core of modern business. From recommendation engines and fraud detection to medical imaging, autonomous systems and language models, machine learning now underpins many of the UK’s most critical technologies. Universities have responded quickly. Machine learning modules are now standard in computer science degrees, specialist MSc programmes have proliferated, and online courses promise to fast-track careers in the field. And yet, despite this growth in education, UK employers consistently report the same problem: Many candidates with machine learning qualifications are not job-ready. Roles remain open for months. Interview processes filter out large numbers of applicants. Graduates with strong theoretical knowledge struggle when faced with practical tasks. The issue is not intelligence or effort. It is a persistent skills gap between university-level machine learning education and real-world machine learning jobs. This article explores that gap in depth: what universities teach well, what they routinely miss, why the gap exists, what employers actually want, and how jobseekers can bridge the divide to build successful careers in machine learning.