Staff MLOps Engineer

Bazaarvoice
London
1 year ago
Applications closed

Related Jobs

View all jobs

Lead MLOps Engineer

Staff Data Engineer

Staff Data Engineer

Senior Staff Data Engineer

Data Engineer

Data Engineer (18 Months FTC)

We’re looking for a Staff MLOps Engineer to join our Machine Learning team. You’ll work closely with a team of engineers to create a platform on top of that data that will be leveraged by virtually every other product and system we have built or will build in the future. You’ll be responsible for building and maintaining the infrastructure and tooling that enables our ML Engineers and Data Scientists to focus on model development and feature engineering.

Key Responsibilities

  • Design, implement, and maintain robust MLOps platforms and tooling for both batch and streaming ML pipelines.
  • Develop and manage monitoring and observability solutions for ML systems.
  • Lead DevOps practices, including CI/CD pipelines and Infrastructure as Code (IaC).
  • Architect and implement cloud-based solutions on AWS.
  • Collaborate with ML Engineers and Data Scientists to develop, train, and deploy machine learning models.
  • Engage in feature engineering and model optimization to improve ML system performance.
  • Participate in the full ML lifecycle, from data preparation to model deployment and monitoring.
  • Optimize and refactor existing systems for improved performance and reliability.
  • Drive technical initiatives and best practices in both MLOps and ML Engineering.


Required Skills And Experience

  • Strong Python Proficiency: Excellent skills for developing, deploying, and maintaining our machine learning systems.
  • Language Versatility: Experience with statically-typed or JVM languages. Willingness to learn Scala is highly desirable.
  • Cloud Engineering Skills: Extensive experience with Cloud Platforms & Services, ideally AWS (e.g., Lambda, ECS, ECR, CloudWatch, MSK, SNS, SQS).
  • Infrastructure as Code: Proficiency in IaC, particularly Terraform.
  • Kubernetes Expertise: Strong hands-on experience with managing clusters and deploying services.
  • Data Orchestration: Experience with ML orchestration tools (e.g., Flyte, Airflow, Kubeflow, Luigi, or Prefect).
  • CI/CD: Expertise in pipelines, especially GitHub Actions and Jenkins.
  • Networking: Knowledge of concepts and implementation.
  • Streaming: Experience with Kafka and other streaming technologies.
  • ML Monitoring: Familiarity with observability tools (e.g., Arize AI, Weights and Biases).
  • NLP/LLMs: Experience with NLP, LLMs, and RAG systems in production, or strong desire to learn.
  • CLI & Shell Scripting: Proficiency in scripting and command-line tools.
  • APIs: Experience with deploying and managing production APIs.
  • Software Engineering Best-Practices: Knowledge of industry standards and practices.


Preferred Qualifications

  • AWS AI Services: Hands-on experience with AWS SageMaker and/or AWS Bedrock.
  • Data Processing: Experience with high-volume, unstructured data processing.
  • ML Applications: Familiarity with NLP, Computer Vision, and traditional ML applications.
  • System Migration: Previous work in refactoring and migrating complex systems.
  • AWS Certification: AWS Solution Architect Professional or Associate certification.
  • Advanced Degree: Master's degree in ML / AI / Computer Science.


Personal Qualities

  • Passionate about building developer-friendly platforms and tools.
  • Thrives in a terminal-based development environment.
  • Enthusiastic about creating production-grade, robust, reliable, and performant systems.
  • Not afraid to dive into and improve complex existing solutions.
  • Team player who works well with ML Engineers, Data Scientists, and management.
  • Strong technical mentoring skills.
  • Excellent problem-solving and communication skills.


Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How Many Machine Learning Tools Do You Need to Know to Get a Machine Learning Job?

Machine learning is one of the most exciting and rapidly growing areas of tech. But for job seekers it can also feel like a maze of tools, frameworks and platforms. One job advert wants TensorFlow and Keras. Another mentions PyTorch, scikit-learn and Spark. A third lists Mlflow, Docker, Kubernetes and more. With so many names out there, it’s easy to fall into the trap of thinking you must learn everything just to be competitive. Here’s the honest truth most machine learning hiring managers won’t say out loud: 👉 They don’t hire you because you know every tool. They hire you because you can solve real problems with the tools you know. Tools are important — no doubt — but context, judgement and outcomes matter far more. So how many machine learning tools do you actually need to know to get a job? For most job seekers, the real number is far smaller than you think — and more logically grouped. This guide breaks down exactly what employers expect, which tools are core, which are role-specific, and how to structure your learning for real career results.

What Hiring Managers Look for First in Machine Learning Job Applications (UK Guide)

Whether you’re applying for machine learning engineer, applied scientist, research scientist, ML Ops or data scientist roles, hiring managers scan applications quickly — often making decisions before they’ve read beyond the top third of your CV. In the competitive UK market, it’s not enough to list skills. You must send clear signals of relevance, delivery, impact, reasoning and readiness for production — and do it within the first few lines of your CV or portfolio. This guide walks you through exactly what hiring managers look for first in machine learning applications, how they evaluate CVs and portfolios, and what you can do to improve your chances of getting shortlisted at every stage — from your CV and LinkedIn profile to your cover letter and project portfolio.

MLOps Jobs in the UK: The Complete Career Guide for Machine Learning Professionals

Machine learning has moved from experimentation to production at scale. As a result, MLOps jobs have become some of the most in-demand and best-paid roles in the UK tech market. For job seekers with experience in machine learning, data science, software engineering or cloud infrastructure, MLOps represents a powerful career pivot or progression. This guide is designed to help you understand what MLOps roles involve, which skills employers are hiring for, how to transition into MLOps, salary expectations in the UK, and how to land your next role using specialist platforms like MachineLearningJobs.co.uk.