Staff Full Stack Engineer

Ki
London
1 month ago
Create job alert

Who are we?


Look at the latest headlines and you will see something Ki insures. Think space shuttles, world tours, wind farms, and even footballers’ legs. Ki’s mission is simple. Digitally disrupt and revolutionise a 335-year-old market. Working with Google and UCL, Ki has created a platform that uses algorithms, machine learning and large language models to give insurance brokers quotes in seconds, rather than days. Ki is proudly the biggest global algorithmic insurance carrier. It is the fastest growing syndicate in the Lloyd's of London market, and the first ever to make $100m in profit in 3 years. Ki’s teams have varied backgrounds and work together in an agile, cross-functional way to build the very best experience for its customers. Ki has big ambitions but needs more excellent minds to challenge the status-quo and help it reach new horizons.


What’s the role?


You’ll be primarily focused on the “Portfolio and Digital Underwriting” area of the Tech group. This is a set of 10 multi-disciplinary squads, consisting of Software, Data and Full Stack Engineers, as well as Algorithmic Engineers and Data Scientists. These squads exist to advance our ability to provide accurate quotes for risks based on vast data sets and fined tuned algorithmic capabilities.


The squads own a variety of different systems, including single page applications, data pipelines, backend APIs and algorithmic models.

We’re looking for a Staff Full-Stack Engineer to partner with other Staff level individuals to act as an Engineering leader in this area. You’ll support the Tech Leads in the squads you work with and will look broadly across the wider organisation to raise the bar for Ki’s quality of Software Engineering. You’ll be expected to work through hands on contribution and technical knowhow, but also through forming relationships with Product Managers and Tech Leads, as well as through influencing skills.


Principal Accountabilities:


- Partner with Tech Leads to guide architectural decisions and ensure robust, highly available systems.

- Tackle complex technical challenges with hands-on contributions and build strong relationships within squads.

- Bring a broad engineering perspective to system design discussions.

- Advocate for continuous improvement and mentor team members in both technical and business domains.

- Collaborate across squads on discovery initiatives, technical direction, and long-term strategies for maintainable systems.

- Work closely with Product teams to align end-user requirements with effective technical solutions.

- Promote best practices, minimize inefficiencies, and introduce emerging technologies to enhance team capabilities.


Required Skills and Experience:


- Professional experience with Kotlin, Java or Python and React

- Proven experience as an Engineer working across multiple squads.

- Demonstrated ability to drive technical and behavioural improvements across teams.

- Expertise in leading architectural design for complex backend systems.

- Skilled in influencing and implementing changes across squads.

- Hands-on experience building full stack web applications.

- Proficient with cloud infrastructure, infrastructure as code, and standard logging/monitoring tools for issue investigation.

- Strong background in continuous integration, with a preference for continuous delivery.

- Familiarity with build tools (e.g., Maven) and version control systems (e.g., Git/GitHub).

- Experience collaborating within multi-disciplinary squads, including Data Engineers and Data Scientists.


Our culture


Inclusion & Diversity is at the heart of our business at Ki. We recognise that diversity in age, race, gender, ethnicity, sexual orientation, physical ability, thought and social background bring richness to our working environment. No matter who you are, where you’re from, how you think, or who you love, we believe you should be you.


You’ll get a highly competitive remuneration and benefits package. This is kept under constant review to make sure it stays relevant. We understand the power of saying thank you and take time to acknowledge and reward extraordinary effort by teams or individuals.

Related Jobs

View all jobs

Software Engineer

Senior Technical Services Engineer

Chief Information Security Officer – Managing Director

Senior Product Manager, Homeownership (Basé à London)

Senior Product Manager, Credit Platform London (Basé à London)

Admin Assistant

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Contract vs Permanent Machine Learning Jobs: Which Pays Better in 2025?

Machine learning (ML) has swiftly become one of the most transformative forces in the UK technology landscape. From conversational AI and autonomous vehicles to fraud detection and personalised recommendations, ML algorithms are reshaping how organisations operate and how consumers experience products and services. In response, job opportunities in machine learning—including roles in data science, MLOps, natural language processing (NLP), computer vision, and more—have risen dramatically. Yet, as the demand for ML expertise booms, professionals face a pivotal choice about how they want to work. Some choose day‑rate contracting, leveraging short-term projects for potentially higher immediate pay. Others embrace fixed-term contract (FTC) roles for mid-range stability, or permanent positions for comprehensive benefits and a well-defined career path. In this article, we will explore these different employment models, highlighting the pros and cons of each, offering sample take‑home pay scenarios, and providing insights into which path might pay better in 2025. Whether you’re a new graduate with a machine learning degree or an experienced practitioner pivoting into an ML-heavy role, understanding these options is key to making informed career decisions.

Machine‑Learning Jobs for Non‑Technical Professionals: Where Do You Fit In?

The Model Needs More Than Math When ChatGPT went viral and London start‑ups raised seed rounds around “foundation models,” many professionals asked, “Do I need to learn PyTorch to work in machine learning?” The answer is no. According to the Turing Institute’s UK ML Industry Survey 2024, 39 % of advertised ML roles focus on strategy, compliance, product or operations rather than writing code. As models move from proof‑of‑concept to production, demand surges for specialists who translate algorithms into business value, manage risk and drive adoption. This guide reveals the fastest‑growing non‑coding ML roles, the transferable skills you may already have, real transition stories and a 90‑day action plan—no gradient descent necessary.

Quantexa Machine‑Learning Jobs in 2025: Your Complete UK Guide to Joining the Decision‑Intelligence Revolution

Money‑laundering rings, sanctioned entities, synthetic identities—complex risks hide in plain sight inside data. Quantexa, a London‑born scale‑up now valued at US $2.2 bn (Series F, August 2024), solves that problem with contextual decision‑intelligence (DI): graph analytics, entity resolution and machine learning stitched into a single platform. Banks, insurers, telecoms and governments from HSBC to HMRC use Quantexa to spot fraud, combat financial crime and optimise customer engagement. With the launch of Quantexa AI Studio in February 2025—bringing generative AI co‑pilots and large‑scale Graph Neural Networks (GNNs) to the platform—the company is hiring at record pace. The Quantexa careers portal lists 450+ open roles worldwide, over 220 in the UK across data science, software engineering, ML Ops and client delivery. Whether you are a graduate data scientist fluent in Python, a Scala veteran who loves Spark or a solutions architect who can turn messy data into knowledge graphs, this guide explains how to land a Quantexa machine‑learning job in 2025.