Sr. Data Scientist London, UK

Galytix Limited
London
1 day ago
Create job alert

Galytix (GX) is delivering on the promise of AI.

GX has built specialised knowledge AI assistants for the banking and insurance industry. Our assistants are fed by sector-specific data and knowledge and easily adaptable through ontology layers to reflect institution-specific rules.

GX AI assistants are designed for Individual Investors, Credit and Claims professionals. Our assistants are being used right now in global financial institutions. Proven, trusted, non-hallucinating, our assistants are empowering financial professionals and delivering 10x improvements by supporting them in their day-to-day tasks.

Responsibilities:

  • Contributing by processing, analyzing, and synthesizing information applied to a live client problem at scale.
  • Developing machine learning models to extract insights from both structured and unstructured data in areas such as NLP and Computer Vision.
  • The role requires skills in both prototyping and developing individual solutions but also implementation and integration in a production environment.

Desired Skills:

  • A university degree in Mathematics, Computer Science, Engineering, Physics or similar.
  • 6+ years of relevant experience in several areas of Data Mining, Classical Machine Learning, Deep Learning, NLP and Computer Vision.
  • Experience with Large Scale/ Big Data technology, such as Hadoop, Spark, Hive, Impala, PrestoDb.
  • Hands-on capability developing ML models using open-source frameworks in Python and R and applying them on real client use cases.
  • Proficient in one of the deep learning stacks such as PyTorch or Tensorflow.
  • Working knowledge of parallelisation and async paradigms in Python, Spark, Dask, Apache Ray.
  • An awareness and interest in economic, financial and general business concepts and terminology.
  • Excellent written and verbal command of English.
  • Strong problem-solving, analytical and quantitative skills.
  • A professional attitude and service orientation with the ability to work with our international teams.
  • Experience in leading a team is an advantage.

Why You Do Not Want to Miss This Career Opportunity:

  • We are a mission-driven firm that is revolutionising the Insurance and Banking industry. We are not aiming to incrementally push the current boundaries; we redefine them.
  • Customer-centric organisation with innovation at the core of everything we do.
  • Capitalize on an unparalleled career progression opportunity.
  • Work closely with senior leaders who have individually served several CEOs in Fortune 100 companies globally.
  • Develop highly valued skills and build connections in the industry by working with top-tier Insurance and Banking clients on their mission-critical problems and deploying solutions integrated into their day-to-day workflows and processes.

J-18808-Ljbffr

Related Jobs

View all jobs

Sr. Solutions Architect (Cloud Data, Life Science, ELN, LIMS) - Europe Remote

Sr. Applied Scientist (Operations), GTS

Sr. Director of Engineering, AI & ML

Applied Scientist, Compliance Shared Services

Sr. AI Lead (Gen AI)

Sr. AI Lead (Gen AI)

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Top 10 Books to Advance Your Machine Learning Career in the UK

Machine learning (ML) remains one of the fastest-growing fields within technology, reshaping industries across the UK from finance and healthcare to e-commerce, telecommunications, and beyond. With increasing demand for ML specialists, job seekers who continually update their knowledge and skills hold a significant advantage. In this article, we've curated ten essential books every machine learning professional or aspiring ML engineer in the UK should read. Covering foundational theory, practical implementations, advanced techniques, and industry trends, these resources will equip you to excel in your machine learning career.

Navigating Machine Learning Career Fairs Like a Pro: Preparing Your Pitch, Questions to Ask, and Follow-Up Strategies to Stand Out

Machine learning (ML) has swiftly become one of the most in-demand skill areas across industries, with companies leveraging predictive models and data-driven insights to solve challenges in healthcare, finance, retail, manufacturing, and beyond. Whether you’re an early-career data scientist aiming to break into ML, a seasoned engineer branching into deep learning, or a product manager exploring AI-driven solutions, machine learning career fairs offer a powerful route to connect with prospective employers face-to-face. Attending these events can help you: Network with hiring managers and technical leads who make direct recruitment decisions. Gain insider insights on the latest ML trends and tools. Learn about emerging job roles and new industry verticals adopting machine learning. Showcase your interpersonal and communication skills, both of which are increasingly important in collaborative AI/ML environments. However, with many applicants vying for attention in a bustling hall, standing out isn’t always easy. In this detailed guide, we’ll walk you through how to prepare meticulously, pitch yourself confidently, ask relevant questions, and follow up effectively to land the machine learning opportunity that aligns with your ambitions.

Common Pitfalls Machine Learning Job Seekers Face and How to Avoid Them

Machine learning has emerged as one of the most sought-after fields in technology, with companies across industries—from retail and healthcare to finance and manufacturing—embracing data-driven solutions at an unprecedented pace. In the UK, the demand for skilled ML professionals continues to soar, and opportunities in this domain are abundant. Yet, amid this growing market, competition for machine learning jobs can be fierce. Prospective employers set a high bar: they seek candidates with not just theoretical understanding, but also strong practical skills, business sense, and an aptitude for effective communication. Whether you’re a recent graduate, a data scientist transitioning into machine learning, or a seasoned developer pivoting your career, it’s essential to avoid common mistakes that may hinder your prospects. This blog post explores the pitfalls frequently encountered by machine learning job seekers, and offers actionable guidance on how to steer clear of them. If you’re looking for roles in this thriving sector, don’t forget to check out Machine Learning Jobs for the latest vacancies across the UK. In this article, we’ll break down these pitfalls to help you refine your approach in applications, interviews, and career development. By taking on board these insights, you can significantly enhance your employability, stand out from the competition, and secure a rewarding position in the world of machine learning.