Solutions Architect - Amazon QuickSight

Amazon
London
1 year ago
Applications closed

Related Jobs

View all jobs

Solution Architect – AI & Machine Learning

Data Engineer

Data Engineer - Palantir

Azure/Databricks Data Engineer

Azure/Databricks Data Engineer

SAS Data Engineer

Job ID: 2826021 | Amazon Web Services Australia Pty Ltd

Within the Gen AI/ML Specialist organization, this position is part of the Worldwide Specialist Solution Architecture Team, where you will join a global team for Amazon QuickSight (inclusive of Amazon Q). You will help guide customers in their adoption of Q and QuickSight through the creation of scalable enablement mechanisms, deep dive technical guides, and 1:1 engagement with customers as they evaluate service capabilities. You partner with technical and field teams across AWS and bring the voice of the customer into our product development roadmap.


Key job responsibilities

  1. Design and develop solutions and prototypes for customers that make the best use of Amazon QuickSight, including Generative BI capabilities of Amazon Q in QuickSight, and educate customers on how to integrate dashboards and Q&A experiences into their custom applications.
  2. Collaborate with AWS field sales, training, and support teams to ensure customer success.
  3. Create reusable customer content, such as demos, presentations, documentation, blogs, etc., that will drive adoption of Amazon QuickSight.
  4. Act as technical liaison between customers and the service engineering teams, providing product improvement feedback to AWS developers and accelerating the adoption of new features in customer deployments.
  5. Share what you know by capturing best-practice knowledge from engineering and field teams, including reference architectures and patterns amongst the worldwide AWS solution architect community in order to build a strong worldwide database, analytics and AI/ML community.
  6. Evangelize AWS services and solutions that benefit customers and publicly speak at events such as AWS Summits and AWS re:Invent.


A day in the life

Your daily schedule will be a mix of solving customers' challenges and creating scalable assets to further promote the knowledge and understanding of Amazon QuickSight and Amazon Q in QuickSight. You will collaborate with field teams to drive successful customer outcomes, as well as collaborate with service teams to incorporate customers' feedback into the roadmap. You will work closely with Go-To-Market (GTM) Specialist counterparts to develop a strategy to drive customer adoption further in your territory through 1:1 customer engagement and 1:many virtual and in-person events.


BASIC QUALIFICATIONS

  1. 4+ years of specific technology domain areas (e.g. software development, cloud computing, systems engineering, infrastructure, security, networking, data & analytics) experience.
  2. 3+ years of design, implementation, or consulting in applications and infrastructures experience.
  3. Bachelor's degree.
  4. 2+ years of experience developing dashboards with a Business Intelligence platform such as QuickSight, Tableau, PowerBI, Looker, Thoughtspot, Microstrategy, Sisense, Domo, etc.


PREFERRED QUALIFICATIONS

  1. Experience in technology/software sales, pre-sales, or consulting.
  2. Experience with scripting (e.g. Python, PowerShell).
  3. Experience with AWS technologies.
  4. 2+ years experience architecting and implementing Business Intelligence solutions into production.


Acknowledgement of country:
In the spirit of reconciliation Amazon acknowledges the Traditional Custodians of country throughout Australia and their connections to land, sea and community. We pay our respect to their elders past and present and extend that respect to all Aboriginal and Torres Strait Islander peoples today.


IDE statement:
Amazon is committed to a diverse and inclusive workplace. Amazon is an equal opportunity employer, and does not discriminate on the basis of race, national origin, gender, gender identity, sexual orientation, disability, age, or other legally protected attributes.


Posted:November 19, 2024 (Updated 10 days ago)

#J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

The Skills Gap in Machine Learning Jobs: What Universities Aren’t Teaching

Machine learning has moved from academic research into the core of modern business. From recommendation engines and fraud detection to medical imaging, autonomous systems and language models, machine learning now underpins many of the UK’s most critical technologies. Universities have responded quickly. Machine learning modules are now standard in computer science degrees, specialist MSc programmes have proliferated, and online courses promise to fast-track careers in the field. And yet, despite this growth in education, UK employers consistently report the same problem: Many candidates with machine learning qualifications are not job-ready. Roles remain open for months. Interview processes filter out large numbers of applicants. Graduates with strong theoretical knowledge struggle when faced with practical tasks. The issue is not intelligence or effort. It is a persistent skills gap between university-level machine learning education and real-world machine learning jobs. This article explores that gap in depth: what universities teach well, what they routinely miss, why the gap exists, what employers actually want, and how jobseekers can bridge the divide to build successful careers in machine learning.

Machine Learning Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Are you considering a career change into machine learning in your 30s, 40s or 50s? You’re not alone. In the UK, organisations across industries such as finance, healthcare, retail, government & technology are investing in machine learning to improve decisions, automate processes & unlock new insights. But with all the hype, it can be hard to tell which roles are real job opportunities and which are just buzzwords. This article gives you a practical, UK-focused reality check: which machine learning roles truly exist, what skills employers really hire for, how long retraining realistically takes, how to position your experience and whether age matters in your favour or not. Whether you come from analytics, engineering, operations, research, compliance or business strategy, there is a credible route into machine learning if you approach it strategically.

How to Write a Machine Learning Job Ad That Attracts the Right People

Machine learning now sits at the heart of many UK organisations, powering everything from recommendation engines and fraud detection to forecasting, automation and decision support. As adoption grows, so does demand for skilled machine learning professionals. Yet many employers struggle to attract the right candidates. Machine learning job adverts often generate high volumes of applications, but few applicants have the blend of modelling skill, engineering awareness and real-world experience the role actually requires. Meanwhile, strong machine learning engineers and scientists quietly avoid adverts that feel vague, inflated or confused. In most cases, the issue is not the talent market — it is the job advert itself. Machine learning professionals are analytical, technically rigorous and highly selective. A poorly written job ad signals unclear expectations and low ML maturity. A well-written one signals credibility, focus and a serious approach to applied machine learning. This guide explains how to write a machine learning job ad that attracts the right people, improves applicant quality and strengthens your employer brand.