Software Engineering Manager

Great Billing
1 week ago
Create job alert

Engineering Manager - Financial Services - Lead Tech Transformation!

Xpertise Recruitment is excited to partner with an innovative player in the financial services sector, and we're on the lookout for a talented Engineering Manager / Integration Lead to join their Technology & Transformation leadership team. This is a unique opportunity to spearhead a brand-new tech capability, driving key technology initiatives and aligning them with broader business goals.

As Engineering Manager, you'll take on a pivotal leadership role, shaping the future of the organisation's technology roadmap and fostering a culture of continuous improvement. You'll focus on driving value-led outcomes and positioning technology as a core business enabler.

This is a rare chance to build a brand-new technology function from scratch. You'll have the autonomy to shape architecture, lead a talented team, and drive tech-led transformation. You'll be instrumental in turning this business into a truly modern, technology-driven organisation, with tech at the heart of everything they do.

If you're passionate about cutting-edge technology, leadership, and making an impact, this is the role for you.

What You'll Bring:

Strong background in modern tech stacks, cloud-native architectures, and SaaS solutions.
Extensive cloud experience in a cloud-first environment.
Proven experience in leadership roles with a deep understanding of software development, data engineering, and architectural principles.
Proficiency in programming languages and ability to engage in technical discussions.
Hands-on experience with cloud platforms (AWS, Azure) and DevOps practices (CI/CD pipelines, automation tools).
Excellent communication skills to bridge technical and non-technical stakeholders.
Leadership & Strategy

Define and drive the overall Technology and Engineering strategy, ensuring technology supports business growth.
Collaborate with senior stakeholders to build a robust technology roadmap.
Lead, mentor, and develop a high-performing tech team, fostering growth and continuous improvement.
Take ownership of team recruitment, as this is a new tech capability within the organisation.
Technical Oversight

Oversee all aspects of Data, Infrastructure, Integrations, Test Engineering, and Architecture.
Drive the design and implementation of scalable, secure, and high-performance technology solutions.
Manage SaaS-based core systems, key integrations, and a data platform.
Own internal cloud infrastructure, CI/CD pipelines, and DevOps practices across the tech stack.
Evaluate and implement software, automation, and data tools to enhance business efficiency.

If you feel this is a good potential fit for your experience, then please apply below or feel free to reach

out to Richard Bailey for further details.

*** Sadly, no sponsorship is available and only UK-based candidates can be considered ***

Xpertise are acting as an employment agency and business

Related Jobs

View all jobs

Software Engineering Manager

TechOps Engineering Manager

Engineering Lead / Integration Lead

Senior Software Developer

Full Stack Developer

Senior Project Manager

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Job-Hunting During Economic Uncertainty: Machine Learning Edition

Machine learning (ML) has firmly established itself as a crucial part of modern technology, powering everything from personalised recommendations and fraud detection to advanced robotics and predictive maintenance. Both start-ups and multinational corporations depend on machine learning engineers and data experts to gain a competitive edge via data-driven insights and automation. However, even this high-demand sector can experience a downturn when broader economic forces—such as global recessions, wavering investor confidence, or unforeseen financial events—lead to more selective hiring, stricter budgets, and lengthier recruitment cycles. For ML professionals, the result can be fewer available positions, more rivals applying for each role, or narrower project scopes. Nevertheless, the paradox is that organisations still require skilled ML practitioners to optimise operations, explore new revenue channels, and cope with fast-changing market conditions. This guide aims to help you adjust your job-hunting tactics to these challenges, so you can still secure a fulfilling position despite uncertain economic headwinds. We will cover: How market volatility influences machine learning recruitment and your subsequent steps. Effective strategies to distinguish yourself when the field becomes more discerning. Ways to showcase your technical and interpersonal skills with tangible business impact. Methods for maintaining morale and momentum throughout potentially protracted hiring processes. How www.machinelearningjobs.co.uk can direct you towards the right opportunities in machine learning. By sharpening your professional profile, aligning your abilities with in-demand areas, and engaging with a focused ML community, you can position yourself for success—even in challenging financial conditions.

How to Achieve Work-Life Balance in Machine Learning Jobs: Realistic Strategies and Mental Health Tips

Machine Learning (ML) has become a cornerstone of modern innovation, powering everything from personalised recommendation engines and chatbots to autonomous vehicles and advanced data analytics. With numerous industries integrating ML into their core operations, the demand for skilled professionals—such as ML engineers, research scientists, and data strategists—continues to surge. High salaries, cutting-edge projects, and rapid professional growth attract talent in droves, creating a vibrant yet intensely competitive sector. But the dynamism of this field can cut both ways. Along with fulfilling opportunities comes the pressure of tight deadlines, complex problem-solving, continuous learning curves, and high-stakes project deliverables. It’s a setting where many professionals ask themselves, “Is true work-life balance even possible?” When new algorithms emerge daily and stakeholder expectations soar, the line between healthy dedication and perpetual overwork can become alarmingly thin. This comprehensive guide aims to shed light on how to achieve a healthy work-life balance in Machine Learning roles. We’ll discuss the distinctive pressures ML professionals face, realistic approaches to managing workloads, strategies for safeguarding mental health, and how boundary-setting can be the difference between sustained career growth and burnout. Whether you’re just getting started or have been at the forefront of ML for years, these insights will empower you to excel without sacrificing your well-being.

Transitioning from Academia to the Machine Learning Industry: How PhDs and Researchers Can Thrive in Commercial ML Settings

Machine learning (ML) has rapidly evolved from an academic discipline into a cornerstone of commercial innovation. From personalising online content to accelerating drug discovery, machine learning technologies permeate nearly every sector, creating exciting career avenues for talented researchers. If you’re a PhD or academic scientist thinking about leaping into this dynamic field, you’re not alone. Companies are eager to recruit professionals with a strong foundation in algorithms, statistical methods, and domain-specific knowledge to build the intelligent products of tomorrow. This article explores the essential steps academics can take to transition into industry roles in machine learning. We’ll discuss the differences between academic and commercial research, the skill sets most in demand, and how to optimise your CV and interview strategy. You’ll also find tips on networking, developing a commercial mindset, and navigating common challenges as you pivot your career from the halls of academia to the ML-driven tech sector.