Software Engineer - United Kingdom

DataVisor
Cambridge
1 week ago
Applications closed

Related Jobs

View all jobs

Software Engineer

Software Engineer

Software Engineer

Software Engineer

Software Engineer

Software Engineer - C# / Design and Simulation

DataVisor is the world’s leading AI-powered Fraud and Risk Platform that delivers the best overall detection coverage in the industry. With an open SaaS platform that supports easy consolidation and enrichment of any data, DataVisor's solution scales infinitely and enables organizations to act on fast-evolving fraud and money laundering activities in real time. Its patented unsupervised machine learning technology, advanced device intelligence, powerful decision engine and investigation tools work together to provide guaranteed performance lift from day one. DataVisor's platform is architected to support multiple use cases across different business units flexibly, dramatically lowering the total cost of ownership, compared to legacy point solutions. DataVisor is recognized as an industry leader and has been adopted by many Fortune 500 companies across the globe.

Our award-winning software platform is powered by a team of world-class experts in big data, machine learning, security, and scalable infrastructure. Our culture is open, positive, collaborative, and results driven. Come join us!

Summary:

As platform engineers, we are building a next-generation machine learning platform, which incorporates our secret sauce, UML (unsupervised machine learning) with other SML (supervised machine learning) algorithms. Our team works to improve our core detection algorithms and automate the full training process.

As complex fraud attacks become more prevalent, it is more important than ever to detect fraudsters in real-time. The platform team is responsible for developing the architecture that makes real-time UML possible. We are looking for creative and eager engineers to help us expand our novel streaming and database systems, which enable our detection capabilities.

We continue to push the boundary of what's possible in fraud detection and data processing at scale. Join us to help usher in more innovative solutions to the fraud detection space.

What you'll do:

  • Design and build machine learning systems that process data sets from the world’s largest consumer services
  • Use unsupervised machine learning, supervised machine learning, and deep learning to detect fraudulent behavior and catch fraudsters
  • Build and optimize systems, tools, and validation strategies to support new features
  • Help design/build distributed real-time systems and features
  • Use big data technologies (e.g. Spark, Hadoop, HBase, Cassandra) to build large scale machine learning pipelines
  • Develop new systems on top of real-time streaming technologies (e.g. Kafka, Flink)

Requirements

  • 0-3years software development experience
  • 2 years experience in Java, Shell, Python development
  • Excellent knowledge of Relational Databases, SQL and ORM technologies (JPA2, Hibernate) is a plus
  • Experience in Cassandra, HBase, Flink, Spark or Kafka is a plus.
  • Experience in the Spring Framework is a plus
  • Experience with test-driven development is a plus

Benefits

We offer a flexible schedule with competitive pay, equity participation and health benefits, along with catered lunch, company off-sites, and game nights, as well as the opportunity to work with a world class team.

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine‑Learning Jobs for Non‑Technical Professionals: Where Do You Fit In?

The Model Needs More Than Math When ChatGPT went viral and London start‑ups raised seed rounds around “foundation models,” many professionals asked, “Do I need to learn PyTorch to work in machine learning?” The answer is no. According to the Turing Institute’s UK ML Industry Survey 2024, 39 % of advertised ML roles focus on strategy, compliance, product or operations rather than writing code. As models move from proof‑of‑concept to production, demand surges for specialists who translate algorithms into business value, manage risk and drive adoption. This guide reveals the fastest‑growing non‑coding ML roles, the transferable skills you may already have, real transition stories and a 90‑day action plan—no gradient descent necessary.

Quantexa Machine‑Learning Jobs in 2025: Your Complete UK Guide to Joining the Decision‑Intelligence Revolution

Money‑laundering rings, sanctioned entities, synthetic identities—complex risks hide in plain sight inside data. Quantexa, a London‑born scale‑up now valued at US $2.2 bn (Series F, August 2024), solves that problem with contextual decision‑intelligence (DI): graph analytics, entity resolution and machine learning stitched into a single platform. Banks, insurers, telecoms and governments from HSBC to HMRC use Quantexa to spot fraud, combat financial crime and optimise customer engagement. With the launch of Quantexa AI Studio in February 2025—bringing generative AI co‑pilots and large‑scale Graph Neural Networks (GNNs) to the platform—the company is hiring at record pace. The Quantexa careers portal lists 450+ open roles worldwide, over 220 in the UK across data science, software engineering, ML Ops and client delivery. Whether you are a graduate data scientist fluent in Python, a Scala veteran who loves Spark or a solutions architect who can turn messy data into knowledge graphs, this guide explains how to land a Quantexa machine‑learning job in 2025.

Machine Learning vs. Deep Learning vs. MLOps Jobs: Which Path Should You Choose?

Machine Learning (ML) continues to transform how businesses operate, from personalised product recommendations to automated fraud detection. As ML adoption accelerates in nearly every industry—finance, healthcare, retail, automotive, and beyond—the demand for professionals with specialised ML skills is surging. Yet as you browse Machine Learning jobs on www.machinelearningjobs.co.uk, you may encounter multiple sub-disciplines, such as Deep Learning and MLOps. Each of these fields offers unique challenges, requires a distinct skill set, and can lead to a rewarding career path. So how do Machine Learning, Deep Learning, and MLOps differ? And which area best aligns with your talents and aspirations? This comprehensive guide will define each field, highlight overlaps and differences, discuss salary ranges and typical responsibilities, and explore real-world examples. By the end, you’ll have a clearer vision of which career track suits you—whether you prefer building foundational ML models, pushing the boundaries of neural network performance, or orchestrating robust ML pipelines at scale.