Software Engineer

St James's
10 months ago
Applications closed

Related Jobs

View all jobs

Data Engineer - DV Cleared

Senior Machine Learning Engineer

Data Engineer - SC Cleared

Machine Learning Engineer Python AWS

Lead Data Engineer

SAS Data Engineer

Our energy client is seeking a software engineer to join their team in Mayfair, London.
We are looking for a Senior Backend Software Engineer with strong data engineering skills to join a small, agile team developing software solutions for our energy supply and trading functions.
Hybrid working is in play, with 3 days in the office and 2 days at home.
Software Engineer- About the role:
My client’s energy business is growing rapidly with a strong focus on using advanced data systems and analytics to deliver exceptional service. We are looking for someone to take ownership of the backend architecture that underpins our analytics applications, user tools, and automated trading workflows.
You will collaborate closely with analysts, data scientists, and business stakeholders to translate requirements into robust, scalable backend solutions. You’ll be responsible for designing and developing services, APIs, data pipelines, and internal applications that integrate analytics and enable better decision-making and operational efficiency.
This is a hands-on role for someone who thrives in a fast-paced, build-first culture without multiple tiers of management. You should be excited to take full ownership of backend development, lead on best practices, and coach others in a collaborative, delivery-focused team.
Experience in retail or wholesale electricity and gas markets is helpful, but a willingness to become an expert in this field is essential. Our success is based on understanding the subject matter from first principles.
Software Engineer - Key Responsibilities:

  • Architect, design, develop and maintain backend systems for analytics-driven applications, user tools, and automation workflows.
  • Build and manage APIs and internal services using Python (FastAPI, Flask) and cloud-native tooling.
  • Develop and manage data pipelines, backend components, and supporting infrastructure.
  • Manage server resources and backend processing environments to ensure reliability and scalability.
  • Monitor and maintain application performance, availability, and data quality across production systems.
  • Implement and maintain CI/CD pipelines, testing frameworks, and DevOps practices to enable robust delivery.
  • Write, test, and document code in line with quality standards and engineering best practices.
  • Collaborate with operations, analytics and commercial teams to gather requirements and translate them into scalable technical solutions.
  • Support analysts and data scientists in deploying and operationalising analytics tools and models.
  • Lead or support the data engineering team, help structure development workflows, and mentor junior team members.
    Software Engineer - Skills Required:
  • Python (FastAPI, Flask) (or another asynchronous language/framework)
  • REST API development
  • RabbitMQ / Message queue
  • PostgreSQL
  • Databricks
  • Containerisation: Docker, Kubernetes
  • CI/CD: Azure DevOps, GitHub Actions
  • Relational databases and data lake architecture
  • Model and data pipeline integration (e.g. MLflow)
  • Microsoft Azure (Functions, Storage, Compute)
  • Monitoring tools (Grafana, Prometheus, etc.)
  • Mentoring and knowledge sharing within the team
    Senior Engineer - Desirable Skills:
  • Experience in energy supply or trading
  • Familiarity with dbt or modular analytics tooling
  • Exposure to forecasting or optimisation workflows
  • Knowledge of React or frontend tools for internal apps
    What they offer:
  • A high-autonomy role in a flat, delivery-focused team
  • Ownership of backend systems for real-time analytics and automation
  • A fast-moving, hands-on culture with meaningful technical challenges
  • The opportunity to apply software and data engineering to real-world energy problems

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How Many Machine Learning Tools Do You Need to Know to Get a Machine Learning Job?

Machine learning is one of the most exciting and rapidly growing areas of tech. But for job seekers it can also feel like a maze of tools, frameworks and platforms. One job advert wants TensorFlow and Keras. Another mentions PyTorch, scikit-learn and Spark. A third lists Mlflow, Docker, Kubernetes and more. With so many names out there, it’s easy to fall into the trap of thinking you must learn everything just to be competitive. Here’s the honest truth most machine learning hiring managers won’t say out loud: 👉 They don’t hire you because you know every tool. They hire you because you can solve real problems with the tools you know. Tools are important — no doubt — but context, judgement and outcomes matter far more. So how many machine learning tools do you actually need to know to get a job? For most job seekers, the real number is far smaller than you think — and more logically grouped. This guide breaks down exactly what employers expect, which tools are core, which are role-specific, and how to structure your learning for real career results.

What Hiring Managers Look for First in Machine Learning Job Applications (UK Guide)

Whether you’re applying for machine learning engineer, applied scientist, research scientist, ML Ops or data scientist roles, hiring managers scan applications quickly — often making decisions before they’ve read beyond the top third of your CV. In the competitive UK market, it’s not enough to list skills. You must send clear signals of relevance, delivery, impact, reasoning and readiness for production — and do it within the first few lines of your CV or portfolio. This guide walks you through exactly what hiring managers look for first in machine learning applications, how they evaluate CVs and portfolios, and what you can do to improve your chances of getting shortlisted at every stage — from your CV and LinkedIn profile to your cover letter and project portfolio.

MLOps Jobs in the UK: The Complete Career Guide for Machine Learning Professionals

Machine learning has moved from experimentation to production at scale. As a result, MLOps jobs have become some of the most in-demand and best-paid roles in the UK tech market. For job seekers with experience in machine learning, data science, software engineering or cloud infrastructure, MLOps represents a powerful career pivot or progression. This guide is designed to help you understand what MLOps roles involve, which skills employers are hiring for, how to transition into MLOps, salary expectations in the UK, and how to land your next role using specialist platforms like MachineLearningJobs.co.uk.