Software Engineer

St James's
8 months ago
Applications closed

Related Jobs

View all jobs

Software Engineer - AI MLOps Oxford, England, United Kingdom

Software Engineer III - MLOps

GenAI Software Engineer/Data Scientist

Lead Software Engineer - Agentic AI/Machine Learning

Software and Data Engineer

Lead Software Engineer - MLOps

Our energy client is seeking a software engineer to join their team in Mayfair, London.
We are looking for a Senior Backend Software Engineer with strong data engineering skills to join a small, agile team developing software solutions for our energy supply and trading functions.
Hybrid working is in play, with 3 days in the office and 2 days at home.
Software Engineer- About the role:
My client’s energy business is growing rapidly with a strong focus on using advanced data systems and analytics to deliver exceptional service. We are looking for someone to take ownership of the backend architecture that underpins our analytics applications, user tools, and automated trading workflows.
You will collaborate closely with analysts, data scientists, and business stakeholders to translate requirements into robust, scalable backend solutions. You’ll be responsible for designing and developing services, APIs, data pipelines, and internal applications that integrate analytics and enable better decision-making and operational efficiency.
This is a hands-on role for someone who thrives in a fast-paced, build-first culture without multiple tiers of management. You should be excited to take full ownership of backend development, lead on best practices, and coach others in a collaborative, delivery-focused team.
Experience in retail or wholesale electricity and gas markets is helpful, but a willingness to become an expert in this field is essential. Our success is based on understanding the subject matter from first principles.
Software Engineer - Key Responsibilities:

  • Architect, design, develop and maintain backend systems for analytics-driven applications, user tools, and automation workflows.
  • Build and manage APIs and internal services using Python (FastAPI, Flask) and cloud-native tooling.
  • Develop and manage data pipelines, backend components, and supporting infrastructure.
  • Manage server resources and backend processing environments to ensure reliability and scalability.
  • Monitor and maintain application performance, availability, and data quality across production systems.
  • Implement and maintain CI/CD pipelines, testing frameworks, and DevOps practices to enable robust delivery.
  • Write, test, and document code in line with quality standards and engineering best practices.
  • Collaborate with operations, analytics and commercial teams to gather requirements and translate them into scalable technical solutions.
  • Support analysts and data scientists in deploying and operationalising analytics tools and models.
  • Lead or support the data engineering team, help structure development workflows, and mentor junior team members.
    Software Engineer - Skills Required:
  • Python (FastAPI, Flask) (or another asynchronous language/framework)
  • REST API development
  • RabbitMQ / Message queue
  • PostgreSQL
  • Databricks
  • Containerisation: Docker, Kubernetes
  • CI/CD: Azure DevOps, GitHub Actions
  • Relational databases and data lake architecture
  • Model and data pipeline integration (e.g. MLflow)
  • Microsoft Azure (Functions, Storage, Compute)
  • Monitoring tools (Grafana, Prometheus, etc.)
  • Mentoring and knowledge sharing within the team
    Senior Engineer - Desirable Skills:
  • Experience in energy supply or trading
  • Familiarity with dbt or modular analytics tooling
  • Exposure to forecasting or optimisation workflows
  • Knowledge of React or frontend tools for internal apps
    What they offer:
  • A high-autonomy role in a flat, delivery-focused team
  • Ownership of backend systems for real-time analytics and automation
  • A fast-moving, hands-on culture with meaningful technical challenges
  • The opportunity to apply software and data engineering to real-world energy problems

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Maths for Machine Learning Jobs: The Only Topics You Actually Need (& How to Learn Them)

Machine learning job adverts in the UK love vague phrases like “strong maths” or “solid fundamentals”. That can make the whole field feel gatekept especially if you are a career changer or a student who has not touched maths since A level. Here is the practical truth. For most roles on MachineLearningJobs.co.uk such as Machine Learning Engineer, Applied Scientist, Data Scientist, NLP Engineer, Computer Vision Engineer or MLOps Engineer with modelling responsibilities the maths you actually use is concentrated in four areas: Linear algebra essentials (vectors, matrices, projections, PCA intuition) Probability & statistics (uncertainty, metrics, sampling, base rates) Calculus essentials (derivatives, chain rule, gradients, backprop intuition) Basic optimisation (loss functions, gradient descent, regularisation, tuning) If you can do those four things well you can build models, debug training, evaluate properly, explain trade-offs & sound credible in interviews. This guide gives you a clear scope plus a six-week learning plan, portfolio projects & resources so you can learn with momentum rather than drowning in theory.

Neurodiversity in Machine Learning Careers: Turning Different Thinking into a Superpower

Machine learning is about more than just models & metrics. It’s about spotting patterns others miss, asking better questions, challenging assumptions & building systems that work reliably in the real world. That makes it a natural home for many neurodivergent people. If you live with ADHD, autism or dyslexia, you may have been told your brain is “too distracted”, “too literal” or “too disorganised” for a technical career. In reality, many of the traits that can make school or traditional offices hard are exactly the traits that make for excellent ML engineers, applied scientists & MLOps specialists. This guide is written for neurodivergent ML job seekers in the UK. We’ll explore: What neurodiversity means in a machine learning context How ADHD, autism & dyslexia strengths map to ML roles Practical workplace adjustments you can ask for under UK law How to talk about neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in ML – & how to turn “different thinking” into a genuine career advantage.

Machine Learning Hiring Trends 2026: What to Watch Out For (For Job Seekers & Recruiters)

As we move into 2026, the machine learning jobs market in the UK is going through another big shift. Foundation models and generative AI are everywhere, companies are under pressure to show real ROI from AI, and cloud costs are being scrutinised like never before. Some organisations are slowing hiring or merging teams. Others are doubling down on machine learning, MLOps and AI platform engineering to stay competitive. The end result? Fewer fluffy “AI” roles, more focused machine learning roles with clear ownership and expectations. Whether you are a machine learning job seeker planning your next move, or a recruiter trying to build ML teams, understanding the key machine learning hiring trends for 2026 will help you stay ahead.