Engineer the Quantum RevolutionYour expertise can help us shape the future of quantum computing at Oxford Ionics.

View Open Roles

Software Engineer

Axle Energy
London
5 months ago
Applications closed

Related Jobs

View all jobs

Software Engineer III Data Engineering

Senior Data Engineer

Senior Data Engineer

Data Engineer

Senior Lead Software Engineer - CDAO Metadata Engineering

Data Engineer

Were hiring engineers who ship fast, build delightful products, and want to step into the arena in the fight against climate change.

The electricity grid is changing beyond recognition, and without deploying new software to orchestrate it, well be unable to decarbonise. At Axle, were building the infrastructure thatll underpin the decarbonised energy system. Our software crushes CO2 and energy costs. Our goal is insanely ambitious, and were building a team to match the scale of this challenge. Weve just raised a Seed round from world-leading investors including Accel (TechCrunch) and were growing fast.

We make the technology to move energy usage to times when electricity is cheap and green. Our software controls vehicle charging, heating systems, and home batteries. We use machine learning to figure out what energy people will need, and when theyll need it. We control tens of thousands of energy assets, and were growing quickly.

Axle is a unique startup. Were building in a legacy industry and moving gigawatt-hours of electrons in the real world, but we operate at lightning speed. We ship extraordinarily quickly, and were experts in electricity systems. Were backed by some of the best investors in the world, and were growing the team to meet customer demand.

Requirements

You can expect:

  • insane amounts of ownership
  • hard technical challenges
  • that what you build is commercially and environmentally valuable

In return, we ask for:

  • the courage to build new things fast
  • a commitment to real world impact over technical perfection
  • a desire to help build and lead an exceptional and tight knit team
  • deep-seated motivation to combat climate change

Interview process

  • Initial interview
  • Take-home exercise
  • Final interview (in-person)
  • Offer, references, and welcome to the team!

Tech stack

We like to build backends in Python, because it allows data scientists and engineers to collaborate closely and move quickly. We try a bunch of things in Figma before we build them in code, because its a fast and cheap way to get feedback. Everything we build lives in Docker, for minimal cross-platform faff and maximal reproducibility. We deploy on GCP but dont feel strongly about it.

Benefits

We love the idea of fully remote work but it doesnt work. For very early stage companies, people learn faster, get on better, and accomplish more when theyre spending a decent chunk of time together. We ask that you spend 2-3 days a week in our London office.

We areextremelykeen to build a diverse company, and were particularly eager to hear from candidates who dont fit the traditional role stereotypes. If youre motivated by our mission, please do reach out, even if you feel you might not ‘check all the boxes.

Seniority level

Mid-Senior level

Employment type

Full-time

Job function

Engineering and Information Technology

Industries

IT Services and IT Consulting

J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Seasonal Hiring Peaks for Machine Learning Jobs: The Best Months to Apply & Why

The UK's machine learning sector has evolved into one of Europe's most intellectually stimulating and financially rewarding technology markets, with roles spanning from junior ML engineers to principal machine learning scientists and heads of artificial intelligence research. With machine learning positions commanding salaries from £32,000 for graduate ML engineers to £160,000+ for senior principal scientists, understanding when organisations actively recruit can dramatically accelerate your career progression in this pioneering and rapidly evolving field. Unlike traditional software engineering roles, machine learning hiring follows distinct patterns influenced by AI research cycles, model development timelines, and algorithmic innovation schedules. The sector's unique combination of mathematical rigour, computational complexity, and real-world application requirements creates predictable hiring windows that strategic professionals can leverage to advance their careers in developing tomorrow's intelligent systems. This comprehensive guide explores the optimal timing for machine learning job applications in the UK, examining how enterprise AI strategies, academic research cycles, and deep learning initiatives influence recruitment patterns, and why strategic timing can determine whether you join a groundbreaking AI research team or miss the opportunity to develop the next generation of machine learning algorithms.

Pre-Employment Checks for Machine Learning Jobs: DBS, References & Right-to-Work and more Explained

Pre-employment screening in machine learning reflects the discipline's unique position at the intersection of artificial intelligence research, algorithmic decision-making, and transformative business automation. Machine learning professionals often have privileged access to proprietary datasets, cutting-edge algorithms, and strategic AI systems that form the foundation of organizational competitive advantage and automated decision-making capabilities. The machine learning industry operates within complex regulatory frameworks spanning AI governance directives, algorithmic accountability requirements, and emerging ML ethics regulations. Machine learning specialists must demonstrate not only technical competence in model development and deployment but also deep understanding of algorithmic fairness, AI safety principles, and the societal implications of automated decision-making at scale. Modern machine learning roles frequently involve developing systems that impact hiring decisions, financial services, healthcare diagnostics, and autonomous operations across multiple regulatory jurisdictions and ethical frameworks simultaneously. The combination of algorithmic influence, predictive capabilities, and automated decision-making authority makes thorough candidate verification essential for maintaining compliance, fairness, and public trust in AI-powered systems.

Why Now Is the Perfect Time to Launch Your Career in Machine Learning: The UK's Intelligence Revolution

The United Kingdom stands at the epicentre of a machine learning revolution that's fundamentally transforming how we solve problems, deliver services, and unlock insights from data at unprecedented scale. From the AI-powered diagnostic systems revolutionising healthcare in Manchester to the algorithmic trading platforms driving London's financial markets, Britain's embrace of intelligent systems has created an extraordinary demand for skilled machine learning professionals that dramatically exceeds the current talent supply. If you've been seeking a career at the forefront of technological innovation or looking to position yourself in one of the most impactful sectors of the digital economy, machine learning represents an exceptional opportunity. The convergence of abundant data availability, computational power accessibility, advanced algorithmic development, and enterprise AI adoption has created perfect conditions for machine learning career success.