Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Software Engineer

Axle Energy
London
6 months ago
Applications closed

Related Jobs

View all jobs

Software Engineer III Data Engineering

Software Engineer - Graph Data Science

Senior Software Engineer, Machine Learning

Senior Lead Software Engineer - CDAO Metadata Engineering

Data Engineer

Global Director of Software and Data Engineering, Enterprise Data Office

Were hiring engineers who ship fast, build delightful products, and want to step into the arena in the fight against climate change.

The electricity grid is changing beyond recognition, and without deploying new software to orchestrate it, well be unable to decarbonise. At Axle, were building the infrastructure thatll underpin the decarbonised energy system. Our software crushes CO2 and energy costs. Our goal is insanely ambitious, and were building a team to match the scale of this challenge. Weve just raised a Seed round from world-leading investors including Accel (TechCrunch) and were growing fast.

We make the technology to move energy usage to times when electricity is cheap and green. Our software controls vehicle charging, heating systems, and home batteries. We use machine learning to figure out what energy people will need, and when theyll need it. We control tens of thousands of energy assets, and were growing quickly.

Axle is a unique startup. Were building in a legacy industry and moving gigawatt-hours of electrons in the real world, but we operate at lightning speed. We ship extraordinarily quickly, and were experts in electricity systems. Were backed by some of the best investors in the world, and were growing the team to meet customer demand.

Requirements

You can expect:

  • insane amounts of ownership
  • hard technical challenges
  • that what you build is commercially and environmentally valuable

In return, we ask for:

  • the courage to build new things fast
  • a commitment to real world impact over technical perfection
  • a desire to help build and lead an exceptional and tight knit team
  • deep-seated motivation to combat climate change

Interview process

  • Initial interview
  • Take-home exercise
  • Final interview (in-person)
  • Offer, references, and welcome to the team!

Tech stack

We like to build backends in Python, because it allows data scientists and engineers to collaborate closely and move quickly. We try a bunch of things in Figma before we build them in code, because its a fast and cheap way to get feedback. Everything we build lives in Docker, for minimal cross-platform faff and maximal reproducibility. We deploy on GCP but dont feel strongly about it.

Benefits

We love the idea of fully remote work but it doesnt work. For very early stage companies, people learn faster, get on better, and accomplish more when theyre spending a decent chunk of time together. We ask that you spend 2-3 days a week in our London office.

We areextremelykeen to build a diverse company, and were particularly eager to hear from candidates who dont fit the traditional role stereotypes. If youre motivated by our mission, please do reach out, even if you feel you might not ‘check all the boxes.

Seniority level

Mid-Senior level

Employment type

Full-time

Job function

Engineering and Information Technology

Industries

IT Services and IT Consulting

J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

The Best Free Tools & Platforms to Practise Machine Learning Skills in 2025/26

Machine learning (ML) has become one of the most in-demand career paths in technology. From predicting customer behaviour in retail to detecting fraud in banking and enabling medical breakthroughs in healthcare, ML is transforming industries across the UK and beyond. But here’s the truth: employers don’t just want candidates who have read about machine learning in textbooks. They want evidence that you can actually build, train, and deploy models. That means practising with real tools, working with real datasets, and solving real problems. The good news is that you don’t need to pay for expensive software or courses to get started. A wide range of free, open-source tools and platforms allow you to learn machine learning skills hands-on. Whether you’re a beginner or preparing for advanced roles, you can practise everything from simple linear regression to deploying deep learning models — at no cost. In this guide, we’ll explore the best free tools and platforms to practise machine learning skills in 2025, and how to use them effectively to build a portfolio that UK employers will notice.

Top 10 Skills in Machine Learning According to LinkedIn & Indeed Job Postings

Machine learning (ML) is at the forefront of innovation, powering systems in finance, healthcare, retail, logistics, and beyond in the UK. As organisations leverage ML for predictive analytics, automation, and intelligent systems, demand for skilled practitioners continues to grow. So, which skills are most in demand? Drawing on insights from LinkedIn and Indeed, this article outlines the Top 10 machine learning skills UK employers are looking for in 2025. You'll learn how to demonstrate these capabilities through your CV, interviews, and real-world projects.

The Future of Machine Learning Jobs: Careers That Don’t Exist Yet

Machine learning (ML) has become one of the most powerful forces reshaping the modern world. From voice assistants and recommendation engines to fraud detection and medical imaging, it underpins countless applications. ML is no longer confined to research labs—it powers business models, public services, and consumer technologies across the globe. In the UK, demand for machine learning professionals has risen dramatically. Organisations in finance, retail, healthcare, and defence are embedding ML into their operations. Start-ups in Cambridge, London, and Edinburgh are pioneering innovations, while government-backed initiatives aim to position the UK as a global AI leader. Salaries for ML engineers and researchers are among the highest in the tech sector. Yet despite its current importance, machine learning is only at the beginning of its journey. Advances in generative AI, quantum computing, robotics, and ethical governance will reshape the profession. Many of the most vital machine learning jobs of the next two decades don’t exist today. This article explores why new careers will emerge, the roles likely to appear, how today’s roles will evolve, why the UK is well positioned, and how professionals can prepare now.