Senior / Staff Machine Learning Engineer (HighSalary)

ARM
Haverhill
3 months ago
Applications closed

Related Jobs

View all jobs

Senior/Staff Machine Learning Engineer

Machine Learning Manager

Machine Learning Engineering Manager

Machine Learning Performance Engineer, London

Staff Engineer (ML-Native / Software Engineering)

Principal Software Engineer

Job Description: Arms Machine Learning Group isseeking highly motivated and creative Software Engineers to jointhe Cambridge-based ML Content, Algorithms and Tools team! ThisMachine Learning Engineer role focuses on advancing the field of AIby optimizing and deploying pioneering models, particularly LargeLanguage Models (LLMs) and Generative AI algorithms. This involvesdeep analysis of neural networks, optimizing software and hardware,developing innovative solutions, and collaborating with teams tobuild high-performance AI systems. Responsibilities : Yourresponsibilities involve working with major ML frameworks (PyTorch,TensorFlow, etc.) to port and develop ML networks, optimize andquantize models for efficient execution on Arm platforms, and helpensure multiple Arm products are designed to perform effectivelyfor machine learning. As an in-depth technical responsibility, youwill need to deeply understand the complex applications you analyzeand communicate them in their simplest form to contribute toproduct designs, allowing you to influence both IP and systemarchitecture. Required Skills and Experience :A background incomputer science, software engineering or other comparableskillsExperience training and debugging neural networks withTensorFlow and PyTorch using PythonUnderstanding, deploying, andoptimizing Large Language Models (LLMs) and Generative AIalgorithms.Experience using software development platforms andcontinuous integration systemsFamiliarity with Linux and cloudservicesHave a strong attention to detail to ensure use cases youinvestigate are well understood and the critical areas needingimprovement are understood Nice To Have Skills and Experience:Experience of the inner workings of Pytorch, Tensorflow,Executorch and Tensorflow LiteExperience of developing andmaintaining CI/testing components to improve automation of modelanalysisGood knowledge of Python for working with ML frameworksGoodknowledge of C++ for working with optimised ML librariesPreviousexperience of machine learning projectsExperience with deploymentoptimizations on machine learning models In Return : From researchto proof-of-concept development, to deployment on ARM IPs, joiningthis team would be a phenomenal opportunity to contribute to thefull life cycle of machine learning projects and understand howinnovative machine learning is used to solve real word problems.Working closely with experts in ML and software and hardwareoptimisation - a truly multi-discipline environment - you will havethe chance to explore existing or build new machine learningtechniques, while helping unpick the complex world of use-casesspanning mobile phones, servers, autonomous driving vehicles, andlow-power embedded devices #LI-TE! Accommodations at ArmAt Arm, wewant our people to Do Great Things. If you need support or anaccommodation to Be Your Brilliant Self during the recruitmentprocess, please email . To note, by sendingus the requested information, you consent to its use by Arm toarrange for appropriate accommodations. All accommodation requestswill be treated with confidentiality, and information concerningthese requests will only be disclosed as necessary to provide theaccommodation. Although this is not an exhaustive list, examples ofsupport include breaks between interviews, having documents readaloud or office accessibility. Please email us about anything wecan do to accommodate you during the recruitment process.HybridWorking at ArmArm’s approach to hybrid working is designed tocreate a working environment that supports both high performanceand personal wellbeing. We believe in bringing people together faceto face to enable us to work at pace, whilst recognizing the valueof flexibility. Within that framework, we empower groups/teams todetermine their own hybrid working patterns, depending on the workand the team’s needs. Details of what this means for each role willbe shared upon application. In some cases, the flexibility we canoffer is limited by local legal, regulatory, tax, or otherconsiderations, and where this is the case, we will collaboratewith you to find the best solution. Please talk to us to find outmore about what this could look like for you.Equal Opportunities atArmArm is an equal opportunity employer, committed to providing anenvironment of mutual respect where equal opportunities areavailable to all applicants and colleagues. We are a diverseorganization of dedicated and innovative individuals, and don’tdiscriminate on the basis of race, color, religion, sex, sexualorientation, gender identity, national origin, disability, orstatus as a protected veteran.

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Portfolio Projects That Get You Hired for Machine Learning Jobs (With Real GitHub Examples)

In today’s data-driven landscape, the field of machine learning (ML) is one of the most sought-after career paths. From startups to multinational enterprises, organisations are on the lookout for professionals who can develop and deploy ML models that drive impactful decisions. Whether you’re an aspiring data scientist, a seasoned researcher, or a machine learning engineer, one element can truly make your CV shine: a compelling portfolio. While your CV and cover letter detail your educational background and professional experiences, a portfolio reveals your practical know-how. The code you share, the projects you build, and your problem-solving process all help prospective employers ascertain if you’re the right fit for their team. But what kinds of portfolio projects stand out, and how can you showcase them effectively? This article provides the answers. We’ll look at: Why a machine learning portfolio is critical for impressing recruiters. How to select appropriate ML projects for your target roles. Inspirational GitHub examples that exemplify strong project structure and presentation. Tangible project ideas you can start immediately, from predictive modelling to computer vision. Best practices for showcasing your work on GitHub, personal websites, and beyond. Finally, we’ll share how you can leverage these projects to unlock opportunities—plus a handy link to upload your CV on Machine Learning Jobs when you’re ready to apply. Get ready to build a portfolio that underscores your skill set and positions you for the ML role you’ve been dreaming of!

Machine Learning Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

Machine learning is fuelling innovation across every industry, from healthcare to retail to financial services. As organisations look to harness large datasets and predictive algorithms to gain competitive advantages, the demand for skilled ML professionals continues to soar. Whether you’re aiming for a machine learning engineer role or a research scientist position, strong interview performance can open doors to dynamic projects and fulfilling careers. However, machine learning interviews differ from standard software engineering ones. Beyond coding proficiency, you’ll be tested on algorithms, mathematics, data manipulation, and applied problem-solving skills. Employers also expect you to discuss how to deploy models in production and maintain them effectively—touching on MLOps or advanced system design for scaling model inferences. In this guide, we’ve compiled 30 real coding & system‑design questions you might face in a machine learning job interview. From linear regression to distributed training strategies, these questions aim to test your depth of knowledge and practical know‑how. And if you’re ready to find your next ML opportunity in the UK, head to www.machinelearningjobs.co.uk—a prime location for the latest machine learning vacancies. Let’s dive in and gear up for success in your forthcoming interviews.

Negotiating Your Machine Learning Job Offer: Equity, Bonuses & Perks Explained

How to Secure a Compensation Package That Matches Your Technical Mastery and Strategic Influence in the UK’s ML Landscape Machine learning (ML) has rapidly shifted from an emerging discipline to a mission-critical function in modern enterprises. From optimising e-commerce recommendations to powering autonomous vehicles and driving innovation in healthcare, ML experts hold the keys to transformative outcomes. As a mid‑senior professional in this field, you’re not only crafting sophisticated algorithms; you’re often guiding strategic decisions about data pipelines, model deployment, and product direction. With such a powerful impact on business results, companies across the UK are going beyond standard salary structures to attract top ML talent. Negotiating a compensation package that truly reflects your value means looking beyond the numbers on your monthly payslip. In addition to a competitive base salary, you could be securing equity, performance-based bonuses, and perks that support your ongoing research, development, and growth. However, many mid‑senior ML professionals leave these additional benefits on the table—either because they’re unsure how to negotiate them or they simply underestimate their long-term worth. This guide explores every critical aspect of negotiating a machine learning job offer. Whether you’re joining an AI-focused start-up or a major tech player expanding its ML capabilities, understanding equity structures, bonus schemes, and strategic perks will help you lock in a package that matches your technical expertise and strategic influence. Let’s dive in.