Senior Security Data Analyst

Oracle
Nottingham
1 week ago
Create job alert

Oracle’s Software Assurance organization has the mission is to make application security and software assurance, at scale, a reality. We are a diverse and inclusive team of architects, researchers, and engineers, combining our unique perspectives and expertise to create secure and innovative solutions to complex challenges. With the resources of a large enterprise and the agility of a start-up, we are working on a greenfield software assurance project.


Work You’ll Do

We are seeking a Security Data Analyst to join our team. This role will combine data analysis, security research, and development skills where you will be responsible for designing, developing a platform capable of analyzing large datasets for security and compliance requirements. You will leverage your expertise in cybersecurity to proactively identify and address emerging threats, ensuring that secure coding practices are seamlessly integrated into every stage of development.


What You’ll Bring

  • Bachelor’s degree in computer science, Engineering, or a related field (or equivalent work experience).
  • 5+ years of experience in software/platform development/engineering from front end (web), mobile, back end, ad tech, or analytics dataflows backgrounds.
  • Extensive experience in dataflows, or similar roles in data management with proven experience building automated and scalable platforms for data-intensive applications.
  • Experience with navigating and handling large data sets and the ability to design and implement scalable and maintainable systems
  • Strong background in API development and associated architectural patterns such as REST or gRPC
  • Programming experience in Python, Go, Java, or similar.
  • Experience with data science concepts such as data preparation, exploration, modelling and the ability to apply this process when handling structured or unstructured data
  • Confident with using common data science tooling such as Jupyter notebooks, pandas, matplotlib, seaborn, numpy
  • API testing and security tools: Postman, Burp Suite, OWASP ZAP, etc.
  • Strong knowledge of database management systems (DBMS) such as MySQL
  • Hands-on experience with security and compliance frameworks and standards.
  • Knowledge of performance optimization techniques for mobile applications, including memory, CPU and network efficiency.
  • Excellent problem-solving and analytical skills.
  • Strong collaboration and communication skills, with the ability to work in cross functional teams and explain complex technical concepts to non-technical stakeholders.


Nice to Have:

  • Experience with OCI cloud-based services
  • Experience with machine learning or AI in security applications.
  • Experience in Agile methodologies and using project management tools like JIRA and confluence.
  • Knowledge of Software Assurance programs

Career Level - IC5


Responsibilities:

  • Develop a secure, high-performance platform to ingest, parse, and analyze large volumes of API data stored in a MySQL database.
  • Work closely with internal and client teams to analyze, define and implement data rules and data flows, translating these into an auditable tool.
  • Scope and execute threat analysis to research, evaluate, track, and manage information security threats and vulnerabilities in data flows.
  • Ensure the tooling is secure by collaborating with architects and security teams to implement best practices for compliance, data privacy, and protection, while integrating tools and frameworks to assess APIs against OWASP and other relevant security standards (NIST, ISO-27001, PCI-DSS, HIPAA, FedRAMP)
  • Automate security and compliance controls into the platform for continuous monitoring and reporting.
  • Execute MySQL queries to ensure data integrity and consistency
  • Create intuitive dashboards and reports for stakeholders.
  • Create tools to help engineering teams identify security-related weaknesses
  • Stay up to date with the latest trends and technologies, contributing to ongoing improvements of platform architecture and best practices.
  • Maintain clear, comprehensive documentation on the platform architecture, services, and technical decisions to support internal teams and future development.

Related Jobs

View all jobs

Senior Security Data Analyst

Senior Security Data Analyst

Security Cleared Data Analysts

Security Cleared Data Analysts

Security Cleared Data Analysts

Senior Data Analyst / Business Analyst

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Navigating Machine Learning Career Fairs Like a Pro: Preparing Your Pitch, Questions to Ask, and Follow-Up Strategies to Stand Out

Machine learning (ML) has swiftly become one of the most in-demand skill areas across industries, with companies leveraging predictive models and data-driven insights to solve challenges in healthcare, finance, retail, manufacturing, and beyond. Whether you’re an early-career data scientist aiming to break into ML, a seasoned engineer branching into deep learning, or a product manager exploring AI-driven solutions, machine learning career fairs offer a powerful route to connect with prospective employers face-to-face. Attending these events can help you: Network with hiring managers and technical leads who make direct recruitment decisions. Gain insider insights on the latest ML trends and tools. Learn about emerging job roles and new industry verticals adopting machine learning. Showcase your interpersonal and communication skills, both of which are increasingly important in collaborative AI/ML environments. However, with many applicants vying for attention in a bustling hall, standing out isn’t always easy. In this detailed guide, we’ll walk you through how to prepare meticulously, pitch yourself confidently, ask relevant questions, and follow up effectively to land the machine learning opportunity that aligns with your ambitions.

Common Pitfalls Machine Learning Job Seekers Face and How to Avoid Them

Machine learning has emerged as one of the most sought-after fields in technology, with companies across industries—from retail and healthcare to finance and manufacturing—embracing data-driven solutions at an unprecedented pace. In the UK, the demand for skilled ML professionals continues to soar, and opportunities in this domain are abundant. Yet, amid this growing market, competition for machine learning jobs can be fierce. Prospective employers set a high bar: they seek candidates with not just theoretical understanding, but also strong practical skills, business sense, and an aptitude for effective communication. Whether you’re a recent graduate, a data scientist transitioning into machine learning, or a seasoned developer pivoting your career, it’s essential to avoid common mistakes that may hinder your prospects. This blog post explores the pitfalls frequently encountered by machine learning job seekers, and offers actionable guidance on how to steer clear of them. If you’re looking for roles in this thriving sector, don’t forget to check out Machine Learning Jobs for the latest vacancies across the UK. In this article, we’ll break down these pitfalls to help you refine your approach in applications, interviews, and career development. By taking on board these insights, you can significantly enhance your employability, stand out from the competition, and secure a rewarding position in the world of machine learning.

Career Paths in Machine Learning: From Entry-Level Roles to Leadership and Beyond

Machine learning has rapidly transformed from an academic pursuit to a cornerstone of modern technology, fueling innovations in healthcare, finance, retail, cybersecurity, and virtually every industry imaginable. From predictive analytics and computer vision to deep learning models that power personalisation algorithms, machine learning (ML) is reshaping business strategies and creating new economic opportunities. As demand for ML expertise continues to outstrip supply, the UK has become a vibrant hub for machine learning research, entrepreneurship, and corporate adoption. Whether you’re just starting out or have experience in data science, software development, or adjacent fields, there has never been a better time to pursue a career in machine learning. In this article, we will explore: The growing importance of machine learning in the UK Entry-level roles that can kick-start your ML career The skills and qualifications you’ll need to succeed Mid-level and advanced positions, including leadership tracks Tips for job seekers on www.machinelearningjobs.co.uk By the end, you’ll have a clear view of how to build, grow, and lead in one of the most exciting fields in modern technology.