Senior Principal Data Scientist

Novartis Farmacéutica
London
6 days ago
Applications closed

Related Jobs

View all jobs

Principal Data Scientist

Principal Data Scientist / AI Engineer

Principal Data Scientist - Marketing

Data Analysis Scientist - Machine Learning

Senior Machine Learning Engineer

Principal Software Engineer

-Understand complex and critical business problems, formulates integrated analytical approach to mine data sources, employ statistical methods and machine learning algorithms to contribute solving unmet medical needs, discover actionable insights and automate process for reducing effort and time for repeated use. To manage the implementation and adherence to the overall data lifecycle of enterprise data from data acquisition or creation through enrichment, consumption, retention, and retirement, enabling the availability of useful, clean, and accurate data throughout its useful lifecycle. High agility to be able to work across various business domains. Integrate business presentations, smart visualization tools and contextual storytelling to translate findings back to business users with a clear impact. Independently manage budget, ensuring appropriate staffing and coordinating projects within the area. If managing a team: empowers the team and provides guidance and coaching, with initial guidance from more senior leaders supervised. This is usually their first people manager experience.

About the Role

Our Development Team is guided by our purpose: to reimagine medicine to improve and extend people’s lives.

To do this, we are optimizing and strengthening our processes and ways of working.

We are investing in new technologies and building specific therapeutic area and platform depth and capabilities – all to bring our medicines to patients even faster.

We are seeking key talent, like you, to join us and help give people with disease and their families a brighter future to look forward to.

Apply today and welcome to where we thrive together!

The Role

As a Senior Principal Data Scientist in the Medical Affairs Advanced Quantitative Sciences group, you will be responsible for the discussion and implementation of data science methodologies applied to patient-level data (including various clinical, real-world, and biomarker data) across clinical development. You will combine your data science and AI skills and your scientific knowledge in biology or medicine to enrich drug development decisions in close collaboration with internal and external partners.

This role offers hybrid working, requiring 3 days per week or 12 days per month in our London Office.

Key Accountabilities:

  1. You will contribute to planning, execution, interpretation, validation and communication of innovative exploratory analyses and algorithms, to facilitate internal decision making.
  2. You will provide technical expertise in data science and (predictive) machine learning/AI to identify opportunities for influencing internal decision making as well as discussions on white papers/regulatory policy.
  3. You will perform hands-on analysis of integrated data from clinical trials and the real world to generate fit-for-purpose evidence that is applied to decision making in drug development programs.

Your Experience

  1. Ph.D. in data science, biostatistics, or other quantitative field (or equivalent).
  2. More than 3 years experience in clinical drug development with extensive exposure to clinical trials.
  3. Strong knowledge and understanding of statistical methods such as time to event analysis, machine learning, meta-analysis, mixed effect modeling, longitudinal modeling, Bayesian methods, variable selection methods (e.g., lasso, elastic net, random forest), design of clinical trials.
  4. Strong programming skills in R and Python. Demonstrated knowledge of data visualization, exploratory analysis, and predictive modeling.
  5. Excellent interpersonal and communication skills (verbal and writing).
  6. Ability to develop and deliver clear and concise presentations for both internal and external meetings in key decision-making situations.

Why Novartis:Helping people with disease and their families takes more than innovative science. It takes a community of smart, passionate people like you. Collaborating, supporting, and inspiring each other. Combining to achieve breakthroughs that change patients’ lives. Ready to create a brighter future together?

Commitment to Diversity & Inclusion:

Novartis is committed to building an outstanding, inclusive work environment and diverse teams representative of the patients and communities we serve.

J-18808-Ljbffr

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Portfolio Projects That Get You Hired for Machine Learning Jobs (With Real GitHub Examples)

In today’s data-driven landscape, the field of machine learning (ML) is one of the most sought-after career paths. From startups to multinational enterprises, organisations are on the lookout for professionals who can develop and deploy ML models that drive impactful decisions. Whether you’re an aspiring data scientist, a seasoned researcher, or a machine learning engineer, one element can truly make your CV shine: a compelling portfolio. While your CV and cover letter detail your educational background and professional experiences, a portfolio reveals your practical know-how. The code you share, the projects you build, and your problem-solving process all help prospective employers ascertain if you’re the right fit for their team. But what kinds of portfolio projects stand out, and how can you showcase them effectively? This article provides the answers. We’ll look at: Why a machine learning portfolio is critical for impressing recruiters. How to select appropriate ML projects for your target roles. Inspirational GitHub examples that exemplify strong project structure and presentation. Tangible project ideas you can start immediately, from predictive modelling to computer vision. Best practices for showcasing your work on GitHub, personal websites, and beyond. Finally, we’ll share how you can leverage these projects to unlock opportunities—plus a handy link to upload your CV on Machine Learning Jobs when you’re ready to apply. Get ready to build a portfolio that underscores your skill set and positions you for the ML role you’ve been dreaming of!

Machine Learning Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

Machine learning is fuelling innovation across every industry, from healthcare to retail to financial services. As organisations look to harness large datasets and predictive algorithms to gain competitive advantages, the demand for skilled ML professionals continues to soar. Whether you’re aiming for a machine learning engineer role or a research scientist position, strong interview performance can open doors to dynamic projects and fulfilling careers. However, machine learning interviews differ from standard software engineering ones. Beyond coding proficiency, you’ll be tested on algorithms, mathematics, data manipulation, and applied problem-solving skills. Employers also expect you to discuss how to deploy models in production and maintain them effectively—touching on MLOps or advanced system design for scaling model inferences. In this guide, we’ve compiled 30 real coding & system‑design questions you might face in a machine learning job interview. From linear regression to distributed training strategies, these questions aim to test your depth of knowledge and practical know‑how. And if you’re ready to find your next ML opportunity in the UK, head to www.machinelearningjobs.co.uk—a prime location for the latest machine learning vacancies. Let’s dive in and gear up for success in your forthcoming interviews.

Negotiating Your Machine Learning Job Offer: Equity, Bonuses & Perks Explained

How to Secure a Compensation Package That Matches Your Technical Mastery and Strategic Influence in the UK’s ML Landscape Machine learning (ML) has rapidly shifted from an emerging discipline to a mission-critical function in modern enterprises. From optimising e-commerce recommendations to powering autonomous vehicles and driving innovation in healthcare, ML experts hold the keys to transformative outcomes. As a mid‑senior professional in this field, you’re not only crafting sophisticated algorithms; you’re often guiding strategic decisions about data pipelines, model deployment, and product direction. With such a powerful impact on business results, companies across the UK are going beyond standard salary structures to attract top ML talent. Negotiating a compensation package that truly reflects your value means looking beyond the numbers on your monthly payslip. In addition to a competitive base salary, you could be securing equity, performance-based bonuses, and perks that support your ongoing research, development, and growth. However, many mid‑senior ML professionals leave these additional benefits on the table—either because they’re unsure how to negotiate them or they simply underestimate their long-term worth. This guide explores every critical aspect of negotiating a machine learning job offer. Whether you’re joining an AI-focused start-up or a major tech player expanding its ML capabilities, understanding equity structures, bonus schemes, and strategic perks will help you lock in a package that matches your technical expertise and strategic influence. Let’s dive in.