Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Senior MLOPS

Complexio
City of London
2 weeks ago
Create job alert
Overview

Complexio’s Foundational AI platform automates business processes by ingesting and understanding complete enterprise data—both structured and unstructured. Through proprietary models, knowledge graphs, and orchestration layers, Complexio maps human-computer interactions and autonomously executes complex workflows at scale.

Established as a joint venture between Hafnia and Símbolo—with partners including Marfin Management, C Transport Maritime, BW Epic Kosan, and Trans Sea Transport—Complexio is redefining enterprise productivity through context-aware, privacy-first automation.

We are seeking a versatile MLOps Engineer to bridge the gap between data science research and production-ready machine learning systems. This role requires a complete engineering skillset spanning Python development, cloud infrastructure, and collaborative work with research teams.

We\'re looking for a complete engineer who can seamlessly transition between writing production Python code, designing cloud architectures, and collaborating with researchers on cutting-edge ML projects. You should be equally comfortable debugging a Kubernetes deployment, optimising a training pipeline, and explaining technical trade-offs to data scientists.

Responsibilities
  • Production ML Pipeline Development: Design, build, and maintain end-to-end ML pipelines from data ingestion to model deployment and monitoring
  • Infrastructure Management: Architect and manage scalable cloud infrastructure for ML workloads, including container orchestration and automated testing
  • Research Collaboration: Partner closely with data scientists and research teams to translate experimental models into robust, production-ready systems
  • DevOps Best Practices: Establish infrastructure as code, CI/CD pipelines, automated deployments, and comprehensive logging/monitoring
  • Advanced Python Programming: Production Python experience with web frameworks (FastAPI, Flask), testing frameworks, and ML libraries (PyTorch, scikit-learn, numpy) a great-to-have
  • Cloud Computing Expertise: Hands-on experience with major cloud platforms (AWS, GCP, or Azure), including Kubernetes services (EKS/GKE/AKS) and managed ML services (SageMaker, Vertex AI)
  • Research Team Collaboration: Experience working with data science or research teams, effectively translating experimental code into production systems
  • ML Infrastructure: Experience with MLOps tools (MLflow, Kubeflow), container technologies (Docker, Kubernetes), inference engines (vLLM, SGLang), distributed computing (Ray.io), and data labeling platforms (Label Studio)
  • Software Engineering: Strong foundation in version control, testing strategies, software architecture principles, async programming, and concurrent system design
Benefits
  • Work with a groundbreaking AI platform solving real enterprise pain points
  • Help clients achieve measurable ROI through next-gen automation
  • Join a remote-first, globally distributed team backed by industry leaders
  • Shape the success function and influence product direction in a fast-scaling AI company
Qualifications
  • Advanced Python programming with production experience; familiarity with web frameworks (FastAPI, Flask), testing, and ML libraries (PyTorch, scikit-learn, numpy) is a plus
  • Cloud computing expertise across major platforms (AWS, GCP, Azure) with hands-on experience in Kubernetes services (EKS, GKE, AKS) and managed ML services (SageMaker, Vertex AI)
  • Experience collaborating with data science or research teams and translating experimental models into production systems
  • Experience with MLOps tools (MLflow, Kubeflow), container technologies (Docker, Kubernetes), inference engines (vLLM, SGLang), distributed computing (Ray.io), and data labeling platforms (Label Studio)
  • Strong software engineering foundations: version control, testing strategies, software architecture, async programming, and concurrent design


#J-18808-Ljbffr

Related Jobs

View all jobs

Senior MLOps Engineer

Senior MLOps Engineer

Senior MLOps Engineer

Senior MLOps Engineer

Senior MLOps Engineer

Senior MLOps Engineer

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK machine learning hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise shipped ML/LLM features, robust evaluation, observability, safety/governance, cost control and measurable business impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for ML engineers, applied scientists, LLM application engineers, ML platform/MLOps engineers and AI product managers. Who this is for: ML engineers, applied ML/LLM engineers, LLM/retrieval engineers, ML platform/MLOps/SRE, data scientists transitioning to production ML, AI product managers & tech‑lead candidates targeting roles in the UK.

Why Machine Learning Careers in the UK Are Becoming More Multidisciplinary

Machine learning (ML) has moved from research labs into mainstream UK businesses. From healthcare diagnostics to fraud detection, autonomous vehicles to recommendation engines, ML underpins critical services and consumer experiences. But the skillset required of today’s machine learning professionals is no longer purely technical. Employers increasingly seek multidisciplinary expertise: not only coding, algorithms & statistics, but also knowledge of law, ethics, psychology, linguistics & design. This article explores why UK machine learning careers are becoming more multidisciplinary, how these fields intersect with ML roles, and what both job-seekers & employers need to understand to succeed in a rapidly changing landscape.

Machine Learning Team Structures Explained: Who Does What in a Modern Machine Learning Department

Machine learning is now central to many advanced data-driven products and services across the UK. Whether you work in finance, healthcare, retail, autonomous vehicles, recommendation systems, robotics, or consumer applications, there’s a need for dedicated machine learning teams that can deliver models into production, maintain them, keep them secure, efficient, fair, and aligned with business objectives. If you’re hiring for or applying to ML roles via MachineLearningJobs.co.uk, this article will help you understand what roles are typically present in a mature machine learning department, how they collaborate through project lifecycles, what skills and qualifications UK employers look for, what the career paths and salaries are, current trends and challenges, and how to build an effective ML team.