Senior MLOps Engineer

55 Exec Search
Manchester
1 day ago
Create job alert
Senior MLOps Engineer – Delivery Manager Helping Organisations Obtain Top Tech Talent 🧨

Manchester (Hybrid – Manchester office)


Our global client is building advanced behavioural intelligence technology that enables secure, adaptive digital identity. By analysing how people naturally interact with devices, their AI systems generate powerful authentication signals designed for real‑world use at scale.


Our client is moving from R&D into live customer deployments and we’re looking for an experienced Senior MLOps Engineer to help take their behavioural AI models into production and keep them running reliably at scale. This is a hands‑on, high‑impact role at the intersection of machine learning and infrastructure. You’ll own how our models are trained, deployed, monitored, and scaled as real users start relying on them for authentication.


Responsibilities

  • Turning ML models into production‑ready, customer‑facing services
  • Creating CI/CD pipelines for models, not just code
  • Designing low‑latency, high‑availability inference infrastructure
  • Monitoring live models for drift, performance drops, and failures
  • Scaling ML systems as pilot customers onboard
  • Working closely with AI, data, and software engineers to ship reliably

Qualifications

  • 4+ years in MLOps, ML Engineering, or ML‑heavy DevOps roles
  • Strong Python and hands‑on ML framework experience (PyTorch, TensorFlow, etc.)
  • Experience deploying and serving ML models in production
  • Containerisation and orchestration (Docker, Kubernetes or ECS)
  • CI/CD for ML workflows

Nice to Have

  • Model monitoring & observability (Prometheus, Grafana, Datadog)
  • A/B testing or canary deployments for ML models
  • Startup or scale‑up experience
  • Work on real‑time behavioural AI used in authentication
  • High ownership, you’ll shape how ML is run across the company for clients
  • Direct impact as we move into live customer deployments
  • Hybrid working (Manchester‑based)
  • Join at a pivotal growth moment, not after everything is already decided

Seniority level

Mid‑Senior level


Employment type

Full‑time


Job function

Information Technology


Industries: Software Development


#J-18808-Ljbffr

Related Jobs

View all jobs

Senior MLOps Engineer

Senior MLOps Engineer

Senior MLOps Engineer

Senior MLOps Engineer – Scalable GPU ML Infrastructure

Senior MLOps Engineer - Remote-First AI Pipelines

Senior MLOps Engineer - Scale & Automate ML Platforms

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Maths for Machine Learning Jobs: The Only Topics You Actually Need (& How to Learn Them)

Machine learning job adverts in the UK love vague phrases like “strong maths” or “solid fundamentals”. That can make the whole field feel gatekept especially if you are a career changer or a student who has not touched maths since A level. Here is the practical truth. For most roles on MachineLearningJobs.co.uk such as Machine Learning Engineer, Applied Scientist, Data Scientist, NLP Engineer, Computer Vision Engineer or MLOps Engineer with modelling responsibilities the maths you actually use is concentrated in four areas: Linear algebra essentials (vectors, matrices, projections, PCA intuition) Probability & statistics (uncertainty, metrics, sampling, base rates) Calculus essentials (derivatives, chain rule, gradients, backprop intuition) Basic optimisation (loss functions, gradient descent, regularisation, tuning) If you can do those four things well you can build models, debug training, evaluate properly, explain trade-offs & sound credible in interviews. This guide gives you a clear scope plus a six-week learning plan, portfolio projects & resources so you can learn with momentum rather than drowning in theory.

Neurodiversity in Machine Learning Careers: Turning Different Thinking into a Superpower

Machine learning is about more than just models & metrics. It’s about spotting patterns others miss, asking better questions, challenging assumptions & building systems that work reliably in the real world. That makes it a natural home for many neurodivergent people. If you live with ADHD, autism or dyslexia, you may have been told your brain is “too distracted”, “too literal” or “too disorganised” for a technical career. In reality, many of the traits that can make school or traditional offices hard are exactly the traits that make for excellent ML engineers, applied scientists & MLOps specialists. This guide is written for neurodivergent ML job seekers in the UK. We’ll explore: What neurodiversity means in a machine learning context How ADHD, autism & dyslexia strengths map to ML roles Practical workplace adjustments you can ask for under UK law How to talk about neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in ML – & how to turn “different thinking” into a genuine career advantage.

Machine Learning Hiring Trends 2026: What to Watch Out For (For Job Seekers & Recruiters)

As we move into 2026, the machine learning jobs market in the UK is going through another big shift. Foundation models and generative AI are everywhere, companies are under pressure to show real ROI from AI, and cloud costs are being scrutinised like never before. Some organisations are slowing hiring or merging teams. Others are doubling down on machine learning, MLOps and AI platform engineering to stay competitive. The end result? Fewer fluffy “AI” roles, more focused machine learning roles with clear ownership and expectations. Whether you are a machine learning job seeker planning your next move, or a recruiter trying to build ML teams, understanding the key machine learning hiring trends for 2026 will help you stay ahead.