Engineer the Quantum RevolutionYour expertise can help us shape the future of quantum computing at Oxford Ionics.

View Open Roles

Senior Machine Learning Engineer - Graph ML

BenchSci Analytics Inc.
London
2 months ago
Applications closed

Related Jobs

View all jobs

Senior Machine Learning Engineer – Remote - NLP / LLM

Senior Machine Learning Engineer

Senior Machine Learning Engineer

Senior Machine Learning Engineer

Senior Machine Learning Engineer

Senior Machine Learning Engineer

We are looking for a Senior Machine Learning Engineer to join our Knowledge Enrichment team at BenchSci.

You will help design and implement ML-based approaches to analyze, extract and generate knowledge from complex biomedical data such as experimental protocols and from results from several heterogeneous sources, including both publicly available data and proprietary internal data, represented in unstructured text and knowledge graphs. You will work alongside some of the brightest minds in tech, leveraging state of the art approaches to deliver on BenSci’s mission to expedite drug discovery. Knowledge Enrichment is at the core of this challenge as it ensures we can reason over and gain insights from an extensive, accurate, and high quality representation of biomedical data.

The data will be leveraged in order to enrich BenchSci’s knowledge graph through classification, discovery of high value implicit relationships, predicting novel insights/hypotheses, and other ML techniques. You will collaborate with your team members in applying state of the art ML and graph ML/data science algorithms to this data.

You are comfortable working in a team that pushes the boundaries of what is possible with cutting edge ML/AI, challenges the status quo, and is laser focused on value delivery in a fail-fast environment.

You Will:

  • Analyze and manipulate a large, highly-connected biological knowledge graph constructed of data from multiple heterogeneous sources, in order to identify data enrichment opportunities and strategies.
  • Work with data and knowledge engineering experts to design and develop knowledge enrichment approaches/strategies that can exploit data within our knowledge graph.
  • Provide solutions related to classification, clustering, more-like-this-type querying, discovery of high value implicit relationships, and making inferences across the data that can reveal novel insights.
  • Deliver robust, scalable and production-ready ML models, with a focus on optimising performance and efficiency.
  • Architect and design ML solutions, from data collection and preparation, model selection, training, fine-tuning and evaluation, to deployment and monitoring.
  • Collaborate with your teammates from other functions such as product management, project management and science, as well as other engineering disciplines.
  • Sometimes provide technical leadership on Knowledge Enrichment projects that seek to use ML to enrich the data in BenchSci’s Knowledge Graph.
  • Work closely with other ML engineers to ensure alignment on technical solutioning and approaches.
  • Liaise closely with stakeholders from other functions including product and science.
  • Help ensure adoption of ML best practices and state of the art ML approaches within your team(s). Participate in various agile rituals and related practices.

You Have:

  • Minimum 3, ideally 5+ years of experience working as an ML engineer.
  • Some experience providing technical leadership on complex projects.
  • Degree, preferably PhD, in Software Engineering, Computer Science, or a similar area.
  • A proven track record of delivering complex ML projects working alongside high-performing ML, data, and software engineers using agile software development.
  • Demonstrable ML proficiency with a deep understanding of how to utilize state-of-the-art NLP and ML techniques.
  • Mastery of several ML frameworks and libraries, with the ability to architect complex ML systems from scratch.
  • Extensive experience with Python and PyTorch.
  • Track record of contributing to the successful delivery of robust, scalable and production-ready ML models, with a focus on optimising performance and efficiency.
  • Experience with the full ML development lifecycle from architecture and technical design, through data collection and preparation, model selection, training, fine-tuning and evaluation, to deployment and maintenance.
  • Familiarity with implementing solutions leveraging Large Language Models, as well as a deep understanding of how to implement solutions using Retrieval Augmented Generation (RAG) architecture.
  • Experience with graph machine learning (i.e. graph neural networks, graph data science) and practical applications thereof.
  • This is complemented by your experience working with Knowledge Graphs, ideally biological, and a familiarity with biological ontologies.
  • Experience with complex problem solving and an eye for details such as scalability and performance of a potential solution.
  • Comprehensive knowledge of software engineering, programming fundamentals and industry experience using Python.
  • Experience with data manipulation and processing, such as SQL, Cypher or Pandas.
  • A can-do proactive and assertive attitude - your manager believes in freedom and responsibility and helping you own what you do; you will excel best if this environment suits you.
  • You have experience working in cross-functional teams with product managers, scientists, project managers, engineers from other disciplines (e.g. data engineering). Ideally you have worked in the scientific/biological domain with scientists on your team.
  • Outstanding verbal and written communication skills. Can clearly explain complex technical concepts/systems to engineering peers and non-engineering stakeholders.
  • A growth mindset continuously seeking to stay up-to-date with cutting-edge advances in ML/AI, complemented by actively engaging with the ML/AI community.

About BenchSci:

BenchSci's mission is to exponentially increase the speed and quality of life-saving research and development. We empower scientists to run more successful experiments with the world's most advanced, biomedical artificial intelligence software platform.

Backed by Generation Investment Management, TCV, Inovia, F-Prime, Golden Ventures, and Google's AI fund, Gradient Ventures, we provide an indispensable tool for scientists that accelerates research at 16 top 20 pharmaceutical companies and over 4,300 leading academic centers. We're a certified Great Place to Work, and top-ranked company on Glassdoor.

Our Culture:

BenchSci relentlessly builds on its strong foundation of culture. We put team members first, knowing that they're the organization's beating heart. We invest as much in our people as our products. Our culture fosters transparency, collaboration, and continuous learning.

We value each other's differences and always look for opportunities to embed equity into the fabric of our work. We foster diversity, autonomy, and personal growth, and provide resources to support motivated self-leaders in continuous improvement.

You will work with high-impact, highly skilled, and intelligent experts motivated to drive impact and fulfill a meaningful mission. We empower you to unleash your full potential, do your best work, and thrive. Here you will be challenged to stretch yourself to achieve the seemingly impossible. Learn more about our culture.

Diversity, Equity and Inclusion: We're committed to creating an inclusive environment where people from all backgrounds can thrive. We believe that improving diversity, equity and inclusion is our collective responsibility, and this belief guides our DEI journey. Learn more about our DEI initiatives.

Accessibility Accommodations: Should you require any accommodation, we will work with you to meet your needs. Please reach out to .

#LI-Remote


#J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Pre-Employment Checks for Machine Learning Jobs: DBS, References & Right-to-Work and more Explained

Pre-employment screening in machine learning reflects the discipline's unique position at the intersection of artificial intelligence research, algorithmic decision-making, and transformative business automation. Machine learning professionals often have privileged access to proprietary datasets, cutting-edge algorithms, and strategic AI systems that form the foundation of organizational competitive advantage and automated decision-making capabilities. The machine learning industry operates within complex regulatory frameworks spanning AI governance directives, algorithmic accountability requirements, and emerging ML ethics regulations. Machine learning specialists must demonstrate not only technical competence in model development and deployment but also deep understanding of algorithmic fairness, AI safety principles, and the societal implications of automated decision-making at scale. Modern machine learning roles frequently involve developing systems that impact hiring decisions, financial services, healthcare diagnostics, and autonomous operations across multiple regulatory jurisdictions and ethical frameworks simultaneously. The combination of algorithmic influence, predictive capabilities, and automated decision-making authority makes thorough candidate verification essential for maintaining compliance, fairness, and public trust in AI-powered systems.

Why Now Is the Perfect Time to Launch Your Career in Machine Learning: The UK's Intelligence Revolution

The United Kingdom stands at the epicentre of a machine learning revolution that's fundamentally transforming how we solve problems, deliver services, and unlock insights from data at unprecedented scale. From the AI-powered diagnostic systems revolutionising healthcare in Manchester to the algorithmic trading platforms driving London's financial markets, Britain's embrace of intelligent systems has created an extraordinary demand for skilled machine learning professionals that dramatically exceeds the current talent supply. If you've been seeking a career at the forefront of technological innovation or looking to position yourself in one of the most impactful sectors of the digital economy, machine learning represents an exceptional opportunity. The convergence of abundant data availability, computational power accessibility, advanced algorithmic development, and enterprise AI adoption has created perfect conditions for machine learning career success.

Automate Your Machine Learning Jobs Search: Using ChatGPT, RSS & Alerts to Save Hours Each Week

ML jobs are everywhere—product companies, labs, consultancies, fintech, healthtech, robotics—often hidden in ATS portals or duplicated across boards. The fastest way to stay on top of them isn’t more scrolling; it’s automation. With keyword-rich alerts, RSS feeds, and a reusable ChatGPT workflow, you can bring relevant roles to you, triage them in minutes, and tailor strong applications without burning your evenings. This is a copy-paste playbook for www.machinelearningjobs.co.uk readers. It’s UK-centric, practical, and designed to save you hours each week. What You’ll Have Working In 30 Minutes A role & keyword map spanning LLM/NLP, Vision, Core ML, Recommenders, MLOps/Platform, Research/Applied Science, and Edge/Inference optimisation. Shareable Boolean searches you can paste into Google & job boards to cut noise. Always-on alerts & RSS feeds delivering fresh roles to your inbox/reader. A ChatGPT “ML Job Scout” prompt that deduplicates, scores fit, and outputs tailored actions. A lightweight pipeline tracker so deadlines and follow-ups never slip.