Senior Lead Software Engineer - Integration Test Lead

JPMorgan Chase & Co.
Bournemouth
1 year ago
Applications closed

Related Jobs

View all jobs

Lead Software Engineer - Agentic AI/Machine Learning

Senior Engineer

Senior Machine Learning Engineer

Senior Machine Learning Engineer

Senior Machine Learning Engineer

Senior Machine Learning Engineer

Be an integral part of an agile team that's constantly pushing the envelope to enhance, build, and deliver top-notch technology products.

As a Senior Lead Software Engineer at JPMorgan Chase within the CDAO, you are an integral part of an agile team that works to enhance, build, and deliver trusted market-leading technology products in a secure, stable, and scalable way. Drive significant business impact through your capabilities and contributions, and apply deep technical expertise and problem-solving methodologies to tackle a diverse array of challenges that span multiple technologies and applications.

The candidate will be responsible for ensuring the integrity and performance of integration points and will work closely with development, product and business teams to deliver robust, scalable and high-performing solutions

Job responsibilities

Lead the design, development and execution of end-to-end automated test strategies. Break down complex problems into manageable tasks and convey these to the team for coverage and automation expansion. Analyze test results, identify issues and work on resolutions. Develops secure and high-quality production code, and reviews and debugs code written by others Drives decisions that influence the product design, application functionality, and technical operations and processes Serves as a function-wide subject matter expert in one or more areas of focus Actively contributes to the engineering community as an advocate of firmwide frameworks, tools, and practices of the Software Development Life Cycle Influences peers and project decision-makers to consider the use and application of leading-edge technologies Adds to the team culture of diversity, equity, inclusion, and respect

Required qualifications, capabilities, and skills

Experience in test automation and test strategy formulation. Strong programming skill in Python or Java. Strong analytical skills to understand complex systems and data flows. Advanced in one or more programming language(s) Proficiency in Jenkins for CI/CD pipeline management. Advanced knowledge of software applications and technical processes with considerable in-depth knowledge in one or more technical disciplines (., cloud, artificial intelligence, machine learning, mobile, Ability to tackle design and functionality problems independently with little to no oversight Practical cloud native experience Experience in Computer Science, Computer Engineering, Mathematics, or a related technical field

Preferred qualifications, capabilities, and skillsWorking knowledge of databases like Trino, Iceberg, Snowflake and Postgres. Familiarity with AWS services and cloud-based testing environments. Experience with performance testing tools like JMeter. Strong leadership skills, including team mentoring and project management.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Write a Machine Learning Job Ad That Attracts the Right People

Machine learning now sits at the heart of many UK organisations, powering everything from recommendation engines and fraud detection to forecasting, automation and decision support. As adoption grows, so does demand for skilled machine learning professionals. Yet many employers struggle to attract the right candidates. Machine learning job adverts often generate high volumes of applications, but few applicants have the blend of modelling skill, engineering awareness and real-world experience the role actually requires. Meanwhile, strong machine learning engineers and scientists quietly avoid adverts that feel vague, inflated or confused. In most cases, the issue is not the talent market — it is the job advert itself. Machine learning professionals are analytical, technically rigorous and highly selective. A poorly written job ad signals unclear expectations and low ML maturity. A well-written one signals credibility, focus and a serious approach to applied machine learning. This guide explains how to write a machine learning job ad that attracts the right people, improves applicant quality and strengthens your employer brand.

Maths for Machine Learning Jobs: The Only Topics You Actually Need (& How to Learn Them)

Machine learning job adverts in the UK love vague phrases like “strong maths” or “solid fundamentals”. That can make the whole field feel gatekept especially if you are a career changer or a student who has not touched maths since A level. Here is the practical truth. For most roles on MachineLearningJobs.co.uk such as Machine Learning Engineer, Applied Scientist, Data Scientist, NLP Engineer, Computer Vision Engineer or MLOps Engineer with modelling responsibilities the maths you actually use is concentrated in four areas: Linear algebra essentials (vectors, matrices, projections, PCA intuition) Probability & statistics (uncertainty, metrics, sampling, base rates) Calculus essentials (derivatives, chain rule, gradients, backprop intuition) Basic optimisation (loss functions, gradient descent, regularisation, tuning) If you can do those four things well you can build models, debug training, evaluate properly, explain trade-offs & sound credible in interviews. This guide gives you a clear scope plus a six-week learning plan, portfolio projects & resources so you can learn with momentum rather than drowning in theory.

Neurodiversity in Machine Learning Careers: Turning Different Thinking into a Superpower

Machine learning is about more than just models & metrics. It’s about spotting patterns others miss, asking better questions, challenging assumptions & building systems that work reliably in the real world. That makes it a natural home for many neurodivergent people. If you live with ADHD, autism or dyslexia, you may have been told your brain is “too distracted”, “too literal” or “too disorganised” for a technical career. In reality, many of the traits that can make school or traditional offices hard are exactly the traits that make for excellent ML engineers, applied scientists & MLOps specialists. This guide is written for neurodivergent ML job seekers in the UK. We’ll explore: What neurodiversity means in a machine learning context How ADHD, autism & dyslexia strengths map to ML roles Practical workplace adjustments you can ask for under UK law How to talk about neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in ML – & how to turn “different thinking” into a genuine career advantage.