National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

(Senior) Lead Data Engineer

IFS
Staines-upon-Thames
3 months ago
Create job alert

Job Description

Are you ready to make waves in the world of AI? We're on the hunt for a Senior/Lead Data Engineer to join our dynamic global R&D organization. We're looking for someone who brings the heat, fosters seamless collaboration, and is always chasing that next level of excellence.

You'll be at the forefront of infusing cutting-edge advanced analytics and AI into IFS Cloud, revolutionizing Enterprise Resource Planning, Asset Management, and Field Service Management. Get ready to tackle high-stakes challenges like IIoT, predictive maintenance, forecasting, anomaly detection, optimization, and unleashing generative AI. Your data engineer wizardry will power our solutions, crafting efficient data pipelines, expanding our data platform capabilities, and pushing the envelope of data-driven innovation across our product lineup.

Your sharp critical thinking and knack for real-world business dilemmas will be instrumental in orchestrating end-to-end solutions. From spotting opportunities on the horizon to delivering high-performance, scalable data solutions, you'll play a pivotal role in our success.

If you're a maestro of mapping business processes and deciphering complex data, if advanced analytics and AI are your jam, and if you take pride in building top-tier data pipelines for production environments, we want to hear from you.

How Will You Shape the Future?

This role is all about hands-on technical prowess, and we expect you to bring your A-game. You'll be in the driver's seat, working with autonomy, accountability, and technical brilliance. Your mission includes:

Spotting high-value data opportunity within our IFS offerings, translating raw data into powerful features and reusable data assets. Serving as our data expert, guiding us towards the latest and greatest data technology and platform trends. You'll be the guru driving our data platform evolution and providing data project estimates. Leading the Data Engineering team in crafting and integrating data projects from the ground up. From framing problems and experimenting with new data sources and tools to the grand finale of data pipeline implementation and deployment. You will ensure scalability and top-tier performance. Locking arms with ML Engineers, Data Scientists, Architects, and Product/Program Managers. Together, you'll define, create, deploy, monitor, and document data pipelines to power advanced AI solutions. Becoming our data technology evangelist. Get ready to shine on the conference stage, host webinars, and pen compelling white papers and blogs. Share your discoveries with clients and internal stakeholders, offering actionable insights that drive change.

Qualifications

To succeed in this role, you'll need:

7+ years of data engineering experience, skilled in scalable solutions like Data Lakes/Lakehouse, Graph and Vector Databases (, ADLS, Elasticsearch, MongoDB, Azure AI search, etc.).

Proficient in data pipelines across cloud/on-premises, using Azure and other technologies. Experienced in orchestrating data workflows and Kubernetes clusters on AKS using Airflow, Kubeflow, Argo, Dagster or similar. Skilled with data ingestion tools like Airbyte, Fivetran, etc. for diverse data sources. Expert in large-scale data processing with Spark or Dask. Strong in Python, Scala, C# or Java, cloud SDKs and APIs. AI/ML expertise for pipeline efficiency, familiar with TensorFlow, PyTorch, AutoML, Python/R, and MLOps (MLflow, Kubeflow). Solid in DevOps, CI/CD automation with Bitbucket Pipelines, Azure DevOps, GitHub. Automate deployment of data pipelines and applications using Bash, PowerShell, or Azure CLI, Terraform, Helm Chats etc. Experienced in leveraging Azure AI Search, MongoDB, Elasticsearch or other hybrid/vector stores for content analysis and indexing, with a focus on creating advanced RAG (Retrieval Augmented Generation) applications. Proficiency in building IoT data pipelines, encompassing real-time data ingestion, transformation, security, scalability, and seamless integration with IoT platforms. Design, develop, and monitor streaming data applications using Kafka and related technologies.

Ready to make your mark? Join us on this exhilarating journey, where you'll be a vital part of our AI revolution. Let's transform the future together!

Related Jobs

View all jobs

Machine Learning Engineer - Bioimage Data & Agentic Systems

Machine Learning Researcher

Trainee Recruitment Consultant (Progression to Director)

Principal Pricing Analyst

Azure Data Engineer

Data Governance

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

LinkedIn Profile Checklist for Machine Learning Jobs: 10 Tweaks to Drive Recruiter Interest

The machine learning landscape is rapidly evolving, with demand soaring for experts in modelling, algorithm tuning and data-driven insights. Recruiters hunt for candidates proficient in Python, TensorFlow, PyTorch and MLOps processes. A generic profile simply won’t cut it. Our step-by-step LinkedIn for machine learning jobs checklist covers 10 targeted tweaks to ensure your profile ranks in searches and communicates your technical impact. Whether launching your ML career or seeking leadership roles, these optimisations will sharpen your professional narrative and boost recruiter engagement.

Part-Time Study Routes That Lead to Machine Learning Jobs: Evening Courses, Bootcamps & Online Masters

Machine learning—a subset of artificial intelligence—enables computers to learn from data and improve over time without explicit programming. From predictive maintenance in manufacturing to recommendation engines in e-commerce and diagnostic tools in healthcare, machine learning (ML) underpins many of today’s most innovative applications. In the UK, demand for ML professionals—engineers, data scientists, research scientists and ML operations specialists—is growing rapidly, with roles projected to increase by over 50% in the next five years. However, many aspiring ML practitioners cannot step away from work or personal commitments for full-time study. Thankfully, a rich ecosystem of part-time learning pathways—Evening Courses, Intensive Bootcamps and Flexible Online Master’s Programmes—empowers you to learn machine learning while working. This comprehensive guide examines each route: foundational CPD units, immersive bootcamps, accredited online MSc programmes, funding options, planning strategies and a real-world case study. Whether you’re a software developer branching into ML, a statistician aiming to upskill, or a professional exploring AI-driven innovation, you’ll discover how to build in-demand ML expertise on your own schedule.

The Ultimate Assessment-Centre Survival Guide for Machine Learning Jobs in the UK

Assessment centres for machine learning positions in the UK are designed to reflect the complexity and collaboration required in real-world ML projects. From psychometric assessments and live model-building tasks to group data science challenges and behavioural interviews, recruiters evaluate your statistical understanding, coding skills, communication and teamwork. Whether you specialise in deep learning, reinforcement learning or NLP, this guide offers a step-by-step approach to excel at every stage and secure your next ML role.