National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Senior Data Scientist, Recommendations

Square Enix
London
10 months ago
Applications closed

Related Jobs

View all jobs

Senior Data Scientist - Recommendations

Senior Data Scientist

Senior Data Scientist • Credit Risk

Senior Data Scientist

Senior Marketing Data Scientist - Strategic Growth Partner

Senior CRM Data Scientist

Job Summary:

Square Enix is a publisher of entertainment contents, primarily known for digital games such as Final Fantasy series, Kingdom Hearts, Dragon Quest, NieR, Life is Strange and Just Cause. Our mission is to create and deliver entertainment contents which resonates with hearts and minds of customers.

The Senior Data Scientist, Recommendation will be a passionate leader focused on providing optimized and personalized user experiences powered by the application of machine learning. A key member of the Data Science & AI Team, the Sr. Data Scientist will build, manage, and improve our communications with fans via large-scale models that drive engagement.

The successful candidate will excel at solving problems, delivering effective recommender system projects, and ensuring the process is streamlined, efficient, and continuously optimized. Adept at managing system implementations across various stages of development, the Senior Data Scientist, Recommendations should be as comfortable with early-stage Proof of Concept advocacy, project management, and internal workflow creation, as with introducing ML Ops practices and enhancing existing projects with more sophisticated methods. This role will lead mid or junior level data scientist(s) and collaborate with Data Engineering, DevOps, and business stakeholders to ensure the accurate implementation and impact of recommender systems deployed.

Requirements

Key Deliverables:

Build and deploy scalable data science models/algorithms to drive marketing, promotion, and personalization actions that provide measurable improvement. Identify, analyse, and interpret users’ in-game/outer-game behavioural data, and apply analytics and machine learning methods. Design, construct and maintain predictive models including, but not limited to, social behaviour, retention and monetization to increase the lifetime value of our customers. Provide ongoing maintenance and support for deployed machine learning models, ensuring their reliability and effectiveness in real-world applications. Continuously improve our solutions to make them more simple, robust, efficient and scalable. This includes pipeline design and continuous improvement schemes through machine learning Able to effectively manage existing code base, document past experiences, automate processes, and create feedback loops Lead junior/mid data scientists inside/outside of the team who works on recommendation projects. Promote best practices in machine learning system deployment, testing, and evaluation. Project management: Initiate PoC, create workflow with partner teams, deliver results for project approval, set schedules and priorities, and document results. Remain alert to opportunities which further utilize our data or data science methods to benefit the business, operations, or key strategic initiatives.

Key Stakeholders:

Digital Channels, CRM&Rewards, Community & Service, Data Services, Intelligence, Analytics

Knowledge & Experience:

Essential:

Extensive experience of proven experience as a Data Scientist and/or Product Engineer, working on similar projects such as user communication, service optimization and personalization. Practical experience in methodologies used in recommender system such as Collaborative Filtering, Content Based Recommendation, Matrix Factorization. Experience with the management of ML code base and experimentation result in an organized and efficient manner. Experience with cloud platforms and technologies for deploying and managing machine learning models at scale, such as AWS, Azure, or Google Cloud Platform Entrepreneurial and curious mindset with a passion for experimentation and innovation combined with practical business instincts; can both dream big as well as execute and prioritize projects aligned to strategic needs Experience or desire to manage, mentor, and train Jr Data Scientists

Competencies, Skills & Attributes:

Essential:

Proficiency in data analysis, data mining and programming languages preferably with SQL, Python, TensorFlow, PyTorch, or scikit-learn. Practical experience in ML ops, such as Python packaging, Docker/Kubernetes, CI/CD, deployment and monitoring of ML models’ performance.

Our goal at Square Enix is to hire, retain, develop and promote the best talent, regardless of age, gender, race, religious, belief, sexual orientation or physical ability.

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Jobs UK 2025: 50 Companies Hiring Now

Bookmark this page—we refresh the Hotlist every quarter so you always know who’s really scaling their ML teams. The UK’s National AI Strategy, a £2 billion GenAI accelerator fund and a record flow of private capital have kicked ML hiring into overdrive for 2025. Whether you build production‑grade LLM services or optimise on‑device models for edge hardware, employers need your skills now. Below you’ll find 50 organisations that advertised UK‑based machine‑learning vacancies or announced head‑count growth during the past eight weeks. They’re grouped into five quick‑scan categories so you can jump straight to the type of employer—and mission—that excites you. For each company we list: Main UK hub Example live or recent vacancy Why it’s worth a look (stack, impact, culture) Search any employer on MachineLearningJobs.co.uk to see real‑time adverts, or set a free alert so fresh openings drop straight in your inbox.

Return-to-Work Pathways: Relaunch Your Machine Learning Career with Returnships, Flexible & Hybrid Roles

Returning to work after an extended break can feel like starting from scratch—especially in a specialist field like machine learning. Whether you paused your career for parenting, caring responsibilities or another life chapter, the UK’s machine learning sector now offers a variety of return-to-work pathways. From structured returnships to flexible and hybrid roles, these programmes recognise the transferable skills and resilience you’ve developed, pairing you with mentorship, upskilling and supportive networks to ease your transition back. In this guide, you’ll discover how to: Understand the current demand for machine learning talent in the UK Leverage your organisational, communication and analytical skills in ML contexts Overcome common re-entry challenges with practical solutions Refresh your technical knowledge through targeted learning Access returnship and re-entry programmes tailored to machine learning Find roles that fit around family commitments—whether flexible, hybrid or full-time Balance your career relaunch with caring responsibilities Master applications, interviews and networking specific to ML Learn from inspiring returner success stories Get answers to common questions in our FAQ section Whether you aim to return as an ML engineer, research scientist, MLOps specialist or data scientist with an ML focus, this article will map out the steps and resources you need to reignite your machine learning career.

LinkedIn Profile Checklist for Machine Learning Jobs: 10 Tweaks to Drive Recruiter Interest

The machine learning landscape is rapidly evolving, with demand soaring for experts in modelling, algorithm tuning and data-driven insights. Recruiters hunt for candidates proficient in Python, TensorFlow, PyTorch and MLOps processes. A generic profile simply won’t cut it. Our step-by-step LinkedIn for machine learning jobs checklist covers 10 targeted tweaks to ensure your profile ranks in searches and communicates your technical impact. Whether launching your ML career or seeking leadership roles, these optimisations will sharpen your professional narrative and boost recruiter engagement.