National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Senior Data Scientist, Recommendations

Square Enix
London
10 months ago
Applications closed

Related Jobs

View all jobs

Senior Data Scientist

Senior Data Scientist • Credit Risk

Senior Data Scientist

Senior Data Scientist (GenAI)

Senior Data Scientist

Senior Data Scientist

Job Summary:

Square Enix is a publisher of entertainment contents, primarily known for digital games such as Final Fantasy series, Kingdom Hearts, Dragon Quest, NieR, Life is Strange and Just Cause. Our mission is to create and deliver entertainment contents which resonates with hearts and minds of customers.

The Senior Data Scientist, Recommendation will be a passionate leader focused on providing optimized and personalized user experiences powered by the application of machine learning. A key member of the Data Science & AI Team, the Sr. Data Scientist will build, manage, and improve our communications with fans via large-scale models that drive engagement.

The successful candidate will excel at solving problems, delivering effective recommender system projects, and ensuring the process is streamlined, efficient, and continuously optimized. Adept at managing system implementations across various stages of development, the Senior Data Scientist, Recommendations should be as comfortable with early-stage Proof of Concept advocacy, project management, and internal workflow creation, as with introducing ML Ops practices and enhancing existing projects with more sophisticated methods. This role will lead mid or junior level data scientist(s) and collaborate with Data Engineering, DevOps, and business stakeholders to ensure the accurate implementation and impact of recommender systems deployed.

Requirements

Key Deliverables:

Build and deploy scalable data science models/algorithms to drive marketing, promotion, and personalization actions that provide measurable improvement. Identify, analyse, and interpret users’ in-game/outer-game behavioural data, and apply analytics and machine learning methods. Design, construct and maintain predictive models including, but not limited to, social behaviour, retention and monetization to increase the lifetime value of our customers. Provide ongoing maintenance and support for deployed machine learning models, ensuring their reliability and effectiveness in real-world applications. Continuously improve our solutions to make them more simple, robust, efficient and scalable. This includes pipeline design and continuous improvement schemes through machine learning Able to effectively manage existing code base, document past experiences, automate processes, and create feedback loops Lead junior/mid data scientists inside/outside of the team who works on recommendation projects. Promote best practices in machine learning system deployment, testing, and evaluation. Project management: Initiate PoC, create workflow with partner teams, deliver results for project approval, set schedules and priorities, and document results. Remain alert to opportunities which further utilize our data or data science methods to benefit the business, operations, or key strategic initiatives.

Key Stakeholders:

Digital Channels, CRM&Rewards, Community & Service, Data Services, Intelligence, Analytics

Knowledge & Experience:

Essential:

Extensive experience of proven experience as a Data Scientist and/or Product Engineer, working on similar projects such as user communication, service optimization and personalization. Practical experience in methodologies used in recommender system such as Collaborative Filtering, Content Based Recommendation, Matrix Factorization. Experience with the management of ML code base and experimentation result in an organized and efficient manner. Experience with cloud platforms and technologies for deploying and managing machine learning models at scale, such as AWS, Azure, or Google Cloud Platform Entrepreneurial and curious mindset with a passion for experimentation and innovation combined with practical business instincts; can both dream big as well as execute and prioritize projects aligned to strategic needs Experience or desire to manage, mentor, and train Jr Data Scientists

Competencies, Skills & Attributes:

Essential:

Proficiency in data analysis, data mining and programming languages preferably with SQL, Python, TensorFlow, PyTorch, or scikit-learn. Practical experience in ML ops, such as Python packaging, Docker/Kubernetes, CI/CD, deployment and monitoring of ML models’ performance.

Our goal at Square Enix is to hire, retain, develop and promote the best talent, regardless of age, gender, race, religious, belief, sexual orientation or physical ability.

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Get a Better Machine Learning Job After a Lay-Off or Redundancy

Redundancy in machine learning can feel especially frustrating when your role was technically advanced, strategically important, or AI-facing. But the UK still has strong demand for machine learning professionals across fintech, healthtech, retail, cybersecurity, autonomous systems, and generative AI. Whether you're a research-oriented ML engineer, production-focused MLOps developer, or applied scientist, this guide is designed to help you bounce back from redundancy and find a better opportunity that suits your goals.

Machine Learning Jobs Salary Calculator 2025: Figure Out Your True Worth in Seconds

Why last year’s pay survey is useless for UK ML professionals today Ask a Machine Learning Engineer wrangling transformer checkpoints, an MLOps Lead firefighting drift alarms, or a Research Scientist training diffusion models at 3 a.m.: “Am I earning what I deserve?” The honest answer changes monthly. A single OpenAI model drop doubles GPU demand, healthcare regulators release fresh explainability guidance, & a fintech unicorn pays six figures for vector‑search expertise. Each shock nudges salary bands. Any PDF salary guide printed in 2024 now looks like an outdated Jupyter notebook—missing the gen‑AI tsunami, the surge in edge inference, & the UK’s new Responsible‑AI framework. To give ML professionals an accurate benchmark, MachineLearningJobs.co.uk distilled a transparent, three‑factor formula that estimates a realistic 2025 salary in under a minute. Feed in your discipline, UK region, & seniority; you’ll receive a defensible figure—no stale averages, no guesswork. This article unpacks the formula, highlights the forces driving ML pay skyward, & offers five practical moves to boost your value inside the next ninety days.

How to Present Machine Learning Solutions to Non-Technical Audiences: A Public Speaking Guide for Job Seekers

Machine learning is driving change across nearly every industry—from retail and finance to health and logistics. But while the technology continues to evolve rapidly, the ability to communicate it clearly has become just as important as building the models themselves. Whether you're applying for a junior ML engineer role, a research position, or a client-facing AI consultant job, UK employers increasingly expect candidates to explain complex machine learning solutions to non-technical audiences. In this guide, you’ll learn how to confidently present your work, structure your message, use simple visuals, and explain the real-world value of machine learning in a way that makes sense to people without a background in data science.