Engineer the Quantum RevolutionYour expertise can help us shape the future of quantum computing at Oxford Ionics.

View Open Roles

Senior Data Scientist (Equity only)

Luupli
Chester
1 month ago
Applications closed

Related Jobs

View all jobs

Senior Data Scientist - Computer Vision

Senior Data Scientists

Senior Data Scientist

Senior Data Scientist

Senior Data Scientist

Senior Data Scientist

Senior Data scientist (Social Media App) - Equity-Only role

0.25% – 0.5%


About Luupli

Luupli is a social media app 'in-development', which will provide opportunities for diverse creators coming from marginalized communities. Luupli will highlight the work of diverse creators and provide them access to all the opportunities in the social media space.


Work Arrangement

The commitment required from you is a few hours a week, working remotely, until our global launch next year. While this role is currently unpaid, you will be given a vested equity in our startup, together with a range of vested benefits. Once the app launches in the spring of 2024, this role will transition into a paid full-time role.


Job Description:

As a Data Scientist at Luupli, you will play a pivotal role in leveraging AWS analytics services to analyse and extract valuable insights from our data sources. You will collaborate with cross-functional teams, including data engineers, product managers, and business stakeholders, to develop data-driven solutions and deliver actionable recommendations. Your expertise in AWS analytics tools and techniques will be crucial in shaping our data strategy and driving business growth.


Responsibilities:

  • Collaborate with cross-functional teams to understand business objectives, identify data requirements, and define analytics goals.
  • Develop and implement data analysis strategies using AWS analytics services, such as Amazon Redshift, Amazon Athena, Amazon EMR, and Amazon QuickSight.
  • Design and build robust data pipelines and ETL processes to extract, transform, and load data from diverse sources into AWS for analysis.
  • Apply advanced statistical and machine learning techniques to perform predictive and prescriptive analyses, clustering, segmentation, and pattern recognition.
  • Identify key metrics, develop meaningful KPIs, and build dashboards and visualisations using Amazon QuickSight to enable data-driven decision-making.
  • Conduct exploratory data analysis to uncover trends, patterns, and insights that inform product enhancements, user behaviour, and engagement strategies.
  • Collaborate with data engineers to optimise data architecture, data quality, and data governance frameworks in AWS.


Requirements:

1.Bachelor's or master's degree in Computer Science, Statistics, Mathematics, or a related field.

2.Proven experience as a Data Scientist, preferably in a cloud-based environment using AWS analytics services.

3.Strong proficiency in AWS analytics services, such as Amazon Redshift, Amazon Athena, Amazon EMR, and Amazon QuickSight.

4.Solid understanding of data modelling, ETL processes, and data warehousing concepts. 5.Proficiency in statistical analysis, data mining, and machine learning techniques.

6.Proficiency in programming languages such as Python, R, or Scala for data analysis and modelling.

7.Experience with SQL and NoSQL databases, data visualisation tools, and statistical packages.

Strong analytical, problem-solving, and critical thinking skills.

8.Experience with social media analytics and understanding of user behaviour.

9.Familiarity with big data technologies, such as Apache Hadoop, Apache Spark, or Apache Kafka.

10.Knowledge of AWS machine learning services, such as Amazon SageMaker and Amazon Comprehend.

11.Experience with data governance and security best practices in AWS.

12Excellent communication and collaboration skills to effectively work in a cross-functional team environment.

13.Strong attention to detail and ability to deliver high-quality work within deadlines.


Compensation

This is an equity-only position, offering a unique opportunity to gain a stake in a rapidly growing company and contribute directly to its success.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Seasonal Hiring Peaks for Machine Learning Jobs: The Best Months to Apply & Why

The UK's machine learning sector has evolved into one of Europe's most intellectually stimulating and financially rewarding technology markets, with roles spanning from junior ML engineers to principal machine learning scientists and heads of artificial intelligence research. With machine learning positions commanding salaries from £32,000 for graduate ML engineers to £160,000+ for senior principal scientists, understanding when organisations actively recruit can dramatically accelerate your career progression in this pioneering and rapidly evolving field. Unlike traditional software engineering roles, machine learning hiring follows distinct patterns influenced by AI research cycles, model development timelines, and algorithmic innovation schedules. The sector's unique combination of mathematical rigour, computational complexity, and real-world application requirements creates predictable hiring windows that strategic professionals can leverage to advance their careers in developing tomorrow's intelligent systems. This comprehensive guide explores the optimal timing for machine learning job applications in the UK, examining how enterprise AI strategies, academic research cycles, and deep learning initiatives influence recruitment patterns, and why strategic timing can determine whether you join a groundbreaking AI research team or miss the opportunity to develop the next generation of machine learning algorithms.

Pre-Employment Checks for Machine Learning Jobs: DBS, References & Right-to-Work and more Explained

Pre-employment screening in machine learning reflects the discipline's unique position at the intersection of artificial intelligence research, algorithmic decision-making, and transformative business automation. Machine learning professionals often have privileged access to proprietary datasets, cutting-edge algorithms, and strategic AI systems that form the foundation of organizational competitive advantage and automated decision-making capabilities. The machine learning industry operates within complex regulatory frameworks spanning AI governance directives, algorithmic accountability requirements, and emerging ML ethics regulations. Machine learning specialists must demonstrate not only technical competence in model development and deployment but also deep understanding of algorithmic fairness, AI safety principles, and the societal implications of automated decision-making at scale. Modern machine learning roles frequently involve developing systems that impact hiring decisions, financial services, healthcare diagnostics, and autonomous operations across multiple regulatory jurisdictions and ethical frameworks simultaneously. The combination of algorithmic influence, predictive capabilities, and automated decision-making authority makes thorough candidate verification essential for maintaining compliance, fairness, and public trust in AI-powered systems.

Why Now Is the Perfect Time to Launch Your Career in Machine Learning: The UK's Intelligence Revolution

The United Kingdom stands at the epicentre of a machine learning revolution that's fundamentally transforming how we solve problems, deliver services, and unlock insights from data at unprecedented scale. From the AI-powered diagnostic systems revolutionising healthcare in Manchester to the algorithmic trading platforms driving London's financial markets, Britain's embrace of intelligent systems has created an extraordinary demand for skilled machine learning professionals that dramatically exceeds the current talent supply. If you've been seeking a career at the forefront of technological innovation or looking to position yourself in one of the most impactful sectors of the digital economy, machine learning represents an exceptional opportunity. The convergence of abundant data availability, computational power accessibility, advanced algorithmic development, and enterprise AI adoption has created perfect conditions for machine learning career success.