Senior Data Scientist (Epigenetics)

Mitra bio
Greater London
1 week ago
Create job alert

About Mitra bio

Mitra bio is a dynamic start-up baked by Khosla Ventures, Illumina and Oxford University looking to disrupt the skincare industry through data. Mitra is developing a skin longevity platform powered by non-invasive sampling and epigenetics to enhance diagnostics and personalized treatments for the skin. 


The Role

You will be working on cutting edge omics studies to advance skin diagnostics and discovery of novel treatments. Your work will translate into an impactful product in the hands of the consumer. In this customer focused and technically savvy role, you will deliver data science solutions for Next Generation Sequencing with a focus on DNA methylation. You will work in a multi-disciplinary team and will have the opportunity to be involved in strategy to develop bespoke methodologies and ML/AI algorithms for diagnostics and prediction tool development.

 

The Responsibilities: 

  • Build and optimize deep learning modelsfor biological age determination and disease stratification based on large datasets of epigenetic data;
  • Build ML/AI models to predict skin phenotypes from epigenetics and comprehensive metadata/clinical endpoints;
  • Work with the data team to Incorporate other omics into the prediction models to improve accuracy;
  • Work with the engineering team to incorporate your models into valuable products;
  • Work on theAWS infrastructure(data storage, analysis pipelines, compute nodes and AWS specific user/role/resource permissions);
  • Manage multiple projects simultaneously and complete projects in a timely & reliable manner;
  • Design and deliver in-depth, and start-of-the-art client reporting on of high throughput data generated from various NGS and array data from various domains (specifically epigenomics,but also including genomics, proteomics, etc.);
  • Presentexperimental plans and results to internal and external stakeholders;
  • Work as part of a multidisciplinary team;
  • Be involved in hiring and team growth.


Essential skills and experience

  • MSc or PhD equivalent experience in Bioinformatics, Biochemistry, Computer Science or a related subject;
  • 3+ years’ experience delivering bioinformatics and ML based solutions to the industry; 
  • Strong experience in software development (mainly Python), test-driven development and proficiency in collaborative software development practices (code reviews, branching models);
  • Experience in version control, CI/CD and automated deployment;
  • Experience in cloud computing (e.g. AWS/GCP);
  • Familiarity in tools used in modern Illumina NGS data analysis;


Desirable:

  • Experience in analysis of epigenetics data such as DNA methylation and variant analysis (GWAS) is also advantageous;
  • Experience working in agile environments;
  • Experience deploying and maintaining secure computing environments;
  • Familiarity with research governance, The Data Protection Act and Good Clinical Practice;
  • Curiosity on using and implementing current AI technologies into company workflows.

Related Jobs

View all jobs

Senior Data Scientist

Senior Data Scientist

Senior Data Scientist (GenAI)

Senior Data Scientist (MLOps)

Senior Data Scientist/ Senior Risk Scientist

Senior Data Scientist

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Tips for Staying Inspired: How Machine Learning Pros Fuel Creativity and Innovation

Machine learning (ML) continues to reshape industries—from personalised e-commerce recommendations and autonomous vehicles to advanced healthcare diagnostics and predictive maintenance in manufacturing. Yet behind every revolutionary model lies a challenging and sometimes repetitive process: data cleaning, hyperparameter tuning, infrastructure management, stakeholder communications, and constant performance monitoring. It’s no wonder many ML professionals can experience creative fatigue or get stuck in the daily grind. So, how do machine learning experts keep their spark alive and continually generate fresh ideas? Below, you’ll find ten actionable strategies that successful ML engineers, data scientists, and research scientists use to stay innovative and push boundaries. Whether you’re an experienced practitioner or just breaking into the field, these tips can help you fuel creativity and discover new angles for solving complex problems.

Top 10 Machine Learning Career Myths Debunked: Key Facts for Aspiring Professionals

Machine learning (ML) has become one of the hottest fields in technology—touching everything from recommendation engines and self-driving cars to language translation and healthcare diagnostics. The immense potential of ML, combined with attractive compensation packages and high-profile success stories, has spurred countless professionals and students to explore this career path. Yet, despite the boom in demand and innovation, machine learning is not exempt from myths and misconceptions. At MachineLearningJobs.co.uk, we’ve had front-row seats to the real-life career journeys and hiring needs in this field. We see, time and again, that outdated assumptions—like needing a PhD from a top university or that ML is purely about deep neural networks—can mislead new entrants and even deter seasoned professionals from making a successful transition. If you’re curious about a career in machine learning or looking to take your existing ML expertise to the next level, this article is for you. Below, we debunk 10 of the most persistent myths about machine learning careers and offer a clear-eyed view of the essential skills, opportunities, and realistic paths forward. By the end, you’ll be better equipped to make informed decisions about your future in this dynamic and rewarding domain.

Global vs. Local: Comparing the UK Machine Learning Job Market to International Landscapes

How to evaluate opportunities, salaries, and work culture in machine learning across the UK, the US, Europe, and Asia Machine learning (ML) has rapidly transcended the research labs of academia to become a foundational pillar of modern technology. From recommendation engines and autonomous vehicles to fraud detection and personalised healthcare, machine learning techniques are increasingly ubiquitous, transforming how organisations operate. This surge in applications has fuelled an extraordinary global demand for ML professionals—data scientists, ML engineers, research scientists, and more. In this article, we’ll examine how the UK machine learning job market compares to prominent international hubs, including the United States, Europe, and Asia. We’ll explore hiring trends, salary ranges, workplace cultures, and the nuances of remote and overseas roles. Whether you’re a fresh graduate aiming to break into the field, a software engineer with an ML specialisation, or a seasoned professional seeking your next challenge, understanding the global ML landscape is essential for making an informed career move. By the end of this overview, you’ll be equipped with insights into which regions offer the best blend of salaries, work-life balance, and cutting-edge projects—plus practical tips on how to succeed in a domain that’s constantly evolving. Let’s dive in.