National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Senior Data Scientist

Oracle
Reading
1 year ago
Applications closed

Related Jobs

View all jobs

Senior Data Scientist

Senior Data Scientist

Senior Data Scientist

Senior Data Scientist

Senior Data Scientist

Senior Data Scientist

Oracle’s Software Assurance organization has the mission to make application security and software assurance, at scale, a reality. We are an inclusive and diverse team of high caliber data science and ML application researchers and engineers, distributed globally, who thrive on new challenges. We are seeking an experienced Machine Learning Engineer or Data Scientist with technical expertise in Recommender Systems, Natural Language Processing (NLP), and Computer Vision, to join our growing team of multidisciplinary data science and ML experts. As a Senior Data Scientist, you will work closely with the technical and research teams on innovative, strategic projects including advanced applications of ML for the organization. This role is responsible for working on innovative projects for the team, collaborating with other experienced professionals, communication with both internal and external stakeholder leadership teams, and must demonstrate critical thinking abilities, outstanding communication skills, project management experience and the ability to lead and collaborate with other experienced technical professionals.

What we offer

Being part of one of the most strategic departments of Oracle, cooperating with an international team of data science and ML experts with diverse backgrounds worldwide Opportunities for career growth and technical leadership Exposure to cutting edge applications of AI/ML and the opportunity to work with research teams on innovative solutions Evaluating and understanding large production deep learning systems composed of dozens of models Developing novel metrics that provide analytical insights to non-technical stakeholders into how well these kinds of systems are operating.

Career Level - IC3

Required skills

BS in Computer Science, Data Science, Machine Learning, or related technical fields At least 5 years of hands-on experience (may include graduate studies in computer science or related technical fields) with increasing scope in developing and implementing ML solutions Thorough understanding of CS fundamentals including data structures, algorithms, and complexity analysis Strong software development experience through hands on coding Detailed knowledge of modern deep learning concepts, including but not limited to Generative AI (GenAI) models, FCN, CNN, RNN, Autoencoders, Transformers, and Large Language Models (LLM) Familiarity with version control practices (Git), containers, MLOps Experience with at least one cloud platform Experience in formulating analytical problems into actionable research and applying advanced machine learning techniques for problem solving Good communication skills to convey sophisticated topics in straightforward terms to stakeholders (internal or external) A drive to solve hard problems at scale Experience in technical writing, project documentation, and/or technical publications

Preferred Skills

MS/PhD in Computer Science, Data Science, Machine Learning, or related technical fields Familiarity with Learning to Rank models, recommender systems, especially deep learning-based recommender systems, computer vision models, Generative AI models Familiarity with serverless architecture, ML model hosting strategies, and model testing techniques

Travel

The position will require approximately 50% travel to Reading UK 
National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

LinkedIn Profile Checklist for Machine Learning Jobs: 10 Tweaks to Drive Recruiter Interest

The machine learning landscape is rapidly evolving, with demand soaring for experts in modelling, algorithm tuning and data-driven insights. Recruiters hunt for candidates proficient in Python, TensorFlow, PyTorch and MLOps processes. A generic profile simply won’t cut it. Our step-by-step LinkedIn for machine learning jobs checklist covers 10 targeted tweaks to ensure your profile ranks in searches and communicates your technical impact. Whether launching your ML career or seeking leadership roles, these optimisations will sharpen your professional narrative and boost recruiter engagement.

Part-Time Study Routes That Lead to Machine Learning Jobs: Evening Courses, Bootcamps & Online Masters

Machine learning—a subset of artificial intelligence—enables computers to learn from data and improve over time without explicit programming. From predictive maintenance in manufacturing to recommendation engines in e-commerce and diagnostic tools in healthcare, machine learning (ML) underpins many of today’s most innovative applications. In the UK, demand for ML professionals—engineers, data scientists, research scientists and ML operations specialists—is growing rapidly, with roles projected to increase by over 50% in the next five years. However, many aspiring ML practitioners cannot step away from work or personal commitments for full-time study. Thankfully, a rich ecosystem of part-time learning pathways—Evening Courses, Intensive Bootcamps and Flexible Online Master’s Programmes—empowers you to learn machine learning while working. This comprehensive guide examines each route: foundational CPD units, immersive bootcamps, accredited online MSc programmes, funding options, planning strategies and a real-world case study. Whether you’re a software developer branching into ML, a statistician aiming to upskill, or a professional exploring AI-driven innovation, you’ll discover how to build in-demand ML expertise on your own schedule.

The Ultimate Assessment-Centre Survival Guide for Machine Learning Jobs in the UK

Assessment centres for machine learning positions in the UK are designed to reflect the complexity and collaboration required in real-world ML projects. From psychometric assessments and live model-building tasks to group data science challenges and behavioural interviews, recruiters evaluate your statistical understanding, coding skills, communication and teamwork. Whether you specialise in deep learning, reinforcement learning or NLP, this guide offers a step-by-step approach to excel at every stage and secure your next ML role.