Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Senior Data Science Manager

Campion Pickworth
City of London
1 day ago
Create job alert

Campion Pickworth are working with a leading International professional services firm to recruit for Senior Data Science and Machine Learning Manager to support the delivery of innovative analytics and machine learning solutions in a fast-paced, supportive environment.


This is a unique opportunity to work on a wide range of high-impact data science projects, leveraging cutting-edge technologies and working alongside a talented team of professionals. You’ll play a key role in shaping our data capabilities and delivering meaningful insights that support business-critical decisions.


What You’ll Do

  • Lead the development and deployment of advanced analytics, data science, and machine learning tools and solutions.
  • Use technologies such as Python, R, Azure, Databricks, SQL, Power BI, and Tableau to deliver actionable insights from complex data.
  • Guide and mentor junior data scientists and analysts, fostering a culture of growth and technical excellence.
  • Collaborate with cross-functional teams to identify business needs and translate them into scalable data science solutions.
  • Manage multiple projects from inception to deployment within cloud-based environments.
  • Maintain high standards in code review, documentation, and delivery in a DevOps context.
  • Apply a deep understanding of ML techniques, from supervised/unsupervised learning to generative AI and large language models.


What We’re Looking For


Essential Skills and Experience:

  • Proven ability to solve complex, real-world problems through data science and analytics.
  • Experience coaching and reviewing work of junior team members.
  • Strong Python skills (pandas, numpy, scikit-learn) and a solid grounding in probability and statistics.
  • Deep knowledge of machine learning methods and their practical application.
  • Experience managing multiple end-to-end data science projects across varied data types.
  • Familiarity with DevOps practices and tools like Git.
  • Cloud experience (e.g. Azure, AWS) and working with ML platforms and services.
  • Strong communication skills, capable of explaining complex topics to non-technical stakeholders.
  • Ability to align data science efforts with broader business objectives.

Desirable Skills:

  • Experience using R and NLP or deep learning techniques (e.g. TF-IDF, word embeddings, CNNs, RNNs).
  • Familiarity with Generative AI and prompt engineering.
  • Experience with Azure Databricks, MLflow, Azure ML services, Docker, Kubernetes.
  • Exposure to Agile development environments and software engineering best practices.
  • Experience working in large or complex organisations or regulated industries.
  • Strong working knowledge of Excel, SQL, Power BI, and Tableau.


Why Join?

  • Work in a fast-growth, innovation-driven environment.
  • Be part of a diverse and inclusive team where your contributions are valued.
  • Tackle meaningful challenges with real-world impact.
  • Access continuous professional development and technical learning opportunities.

Related Jobs

View all jobs

Senior Data Science Manager

Senior Data Science Manager

Senior Data Science Manager

Senior Data Science Manager

Manager, Data Science & AI - Data Science, Belfast, Derry/Londonderry

Manager, Data Science & AI - Data Science, Belfast, Derry/Londonderry

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK machine learning hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise shipped ML/LLM features, robust evaluation, observability, safety/governance, cost control and measurable business impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for ML engineers, applied scientists, LLM application engineers, ML platform/MLOps engineers and AI product managers. Who this is for: ML engineers, applied ML/LLM engineers, LLM/retrieval engineers, ML platform/MLOps/SRE, data scientists transitioning to production ML, AI product managers & tech‑lead candidates targeting roles in the UK.

Why Machine Learning Careers in the UK Are Becoming More Multidisciplinary

Machine learning (ML) has moved from research labs into mainstream UK businesses. From healthcare diagnostics to fraud detection, autonomous vehicles to recommendation engines, ML underpins critical services and consumer experiences. But the skillset required of today’s machine learning professionals is no longer purely technical. Employers increasingly seek multidisciplinary expertise: not only coding, algorithms & statistics, but also knowledge of law, ethics, psychology, linguistics & design. This article explores why UK machine learning careers are becoming more multidisciplinary, how these fields intersect with ML roles, and what both job-seekers & employers need to understand to succeed in a rapidly changing landscape.

Machine Learning Team Structures Explained: Who Does What in a Modern Machine Learning Department

Machine learning is now central to many advanced data-driven products and services across the UK. Whether you work in finance, healthcare, retail, autonomous vehicles, recommendation systems, robotics, or consumer applications, there’s a need for dedicated machine learning teams that can deliver models into production, maintain them, keep them secure, efficient, fair, and aligned with business objectives. If you’re hiring for or applying to ML roles via MachineLearningJobs.co.uk, this article will help you understand what roles are typically present in a mature machine learning department, how they collaborate through project lifecycles, what skills and qualifications UK employers look for, what the career paths and salaries are, current trends and challenges, and how to build an effective ML team.