Senior Data Engineers

Newcastle upon Tyne
2 months ago
Applications closed

Related Jobs

View all jobs

Senior Data Engineers for large Kent based client

Senior Data Engineer - Microsoft Fabric

Senior Data Engineer - Databricks

Senior Data Architect - Databricks

Senior Data Engineer - Snowflake - £110,000 - London - Hybrid

Senior Data Engineer (Viator)

Data Engineer | Newcastle upon Tyne | Competitive Salary

We're working with a leading technology consulting firm in the Financial Services and Alternative Investment sectors, seeking a talented Data Engineer to join their growing team. This is a fantastic opportunity to make an impact from day one, collaborating with a dynamic group of professionals and solving complex data challenges across multiple asset classes.

The Role

As a Data Engineer, you'll be responsible for developing, testing, and maintaining the firm's data platform. You'll work closely with both front office and technology teams to ensure the availability, reliability, and integrity of data. This role offers exposure to a wide variety of data types and provides opportunities to work with cutting-edge tools and technologies.

Key Responsibilities

Collaborate with front office teams to understand and scope data needs.
Build and optimise the data platform using in-house and vendor tools.
Automate data processes and workflows to improve operational efficiency.
Design and implement data pipelines to integrate internal and external datasets.
Establish best-practice data design and enforce data quality standards.
Maintain the availability and integrity of data for critical business functions.

What We're Looking For

Proven experience in a data specialist role with a passion for solving data-related problems.
Expertise in SQL, Python, and Apache Spark, with experience working in a production environment.
Familiarity with Databricks and Microsoft Azure is a plus.
Financial Services experience is a bonus, but not required.
Strong verbal and written communication skills, with the ability to explain complex data concepts.
Exceptional problem-solving abilities, with a focus on delivering scalable and high-quality solutions.
Ability to thrive in a fast-paced environment and manage multiple tasks simultaneously.
A degree in Computer Science or a related field (preferably from a Russell Group University).

Why You Should Apply

Immediate impact - From day one, you'll have the opportunity to influence key projects and decisions.
Work on a variety of projects alongside talented professionals in an innovative and collaborative environment.
Gain exposure to global trends and industry experts, enhancing your understanding of financial markets and economies.
Take ownership of technical products and projects and engage with different business functions to deliver business value.
Be part of a company that values innovation, technical excellence, and problem-solving.

Randstad Technologies Ltd is a leading specialist recruitment business for the IT & Engineering industries. Please note that due to a high level of applications, we can only respond to applicants whose skills & qualifications are suitable for this position. No terminology in this advert is intended to discriminate against any of the protected characteristics that fall under the Equality Act 2010. For the purposes of the Conduct Regulations 2003, when advertising permanent vacancies we are acting as an Employment Agency, and when advertising temporary/contract vacancies we are acting as an Employment Business

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Portfolio Projects That Get You Hired for Machine Learning Jobs (With Real GitHub Examples)

In today’s data-driven landscape, the field of machine learning (ML) is one of the most sought-after career paths. From startups to multinational enterprises, organisations are on the lookout for professionals who can develop and deploy ML models that drive impactful decisions. Whether you’re an aspiring data scientist, a seasoned researcher, or a machine learning engineer, one element can truly make your CV shine: a compelling portfolio. While your CV and cover letter detail your educational background and professional experiences, a portfolio reveals your practical know-how. The code you share, the projects you build, and your problem-solving process all help prospective employers ascertain if you’re the right fit for their team. But what kinds of portfolio projects stand out, and how can you showcase them effectively? This article provides the answers. We’ll look at: Why a machine learning portfolio is critical for impressing recruiters. How to select appropriate ML projects for your target roles. Inspirational GitHub examples that exemplify strong project structure and presentation. Tangible project ideas you can start immediately, from predictive modelling to computer vision. Best practices for showcasing your work on GitHub, personal websites, and beyond. Finally, we’ll share how you can leverage these projects to unlock opportunities—plus a handy link to upload your CV on Machine Learning Jobs when you’re ready to apply. Get ready to build a portfolio that underscores your skill set and positions you for the ML role you’ve been dreaming of!

Machine Learning Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

Machine learning is fuelling innovation across every industry, from healthcare to retail to financial services. As organisations look to harness large datasets and predictive algorithms to gain competitive advantages, the demand for skilled ML professionals continues to soar. Whether you’re aiming for a machine learning engineer role or a research scientist position, strong interview performance can open doors to dynamic projects and fulfilling careers. However, machine learning interviews differ from standard software engineering ones. Beyond coding proficiency, you’ll be tested on algorithms, mathematics, data manipulation, and applied problem-solving skills. Employers also expect you to discuss how to deploy models in production and maintain them effectively—touching on MLOps or advanced system design for scaling model inferences. In this guide, we’ve compiled 30 real coding & system‑design questions you might face in a machine learning job interview. From linear regression to distributed training strategies, these questions aim to test your depth of knowledge and practical know‑how. And if you’re ready to find your next ML opportunity in the UK, head to www.machinelearningjobs.co.uk—a prime location for the latest machine learning vacancies. Let’s dive in and gear up for success in your forthcoming interviews.

Negotiating Your Machine Learning Job Offer: Equity, Bonuses & Perks Explained

How to Secure a Compensation Package That Matches Your Technical Mastery and Strategic Influence in the UK’s ML Landscape Machine learning (ML) has rapidly shifted from an emerging discipline to a mission-critical function in modern enterprises. From optimising e-commerce recommendations to powering autonomous vehicles and driving innovation in healthcare, ML experts hold the keys to transformative outcomes. As a mid‑senior professional in this field, you’re not only crafting sophisticated algorithms; you’re often guiding strategic decisions about data pipelines, model deployment, and product direction. With such a powerful impact on business results, companies across the UK are going beyond standard salary structures to attract top ML talent. Negotiating a compensation package that truly reflects your value means looking beyond the numbers on your monthly payslip. In addition to a competitive base salary, you could be securing equity, performance-based bonuses, and perks that support your ongoing research, development, and growth. However, many mid‑senior ML professionals leave these additional benefits on the table—either because they’re unsure how to negotiate them or they simply underestimate their long-term worth. This guide explores every critical aspect of negotiating a machine learning job offer. Whether you’re joining an AI-focused start-up or a major tech player expanding its ML capabilities, understanding equity structures, bonus schemes, and strategic perks will help you lock in a package that matches your technical expertise and strategic influence. Let’s dive in.