Senior Data Engineer

Made Tech Limited
Bristol
3 weeks ago
Create job alert

Our Senior Data Engineers enable public sector organisations to embrace a data-driven approach by providing high-quality, cost-efficient data platforms and services tailored to clients’ needs. They develop, operate, and maintain these services, ensuring maximum value for data consumers, including analysts, scientists, and business stakeholders.

Key responsibilities

As a Senior Data Engineer, you may assume multiple roles based on our clients' needs. The role is highly hands-on, supporting project delivery as a senior contributor and upskilling client team members. You might also take on a technical architect role, collaborating with the MadeTech team to identify growth opportunities within the account.

You’ll need a drive to deliver outcomes for users, considering the broader context of delivery and maintaining alignment between operational and analytical aspects of the engineering solution.

Skills, knowledge and expertise

We seek candidates with a range of skills and experience; please apply even if you don’t meet all criteria.

  • Enthusiasm for learning and self-development
  • Proficiency in Git (including Github Actions) and understanding of branch strategies
  • Experience gathering and meeting requirements from clients and users on data projects
  • Strong experience in Infrastructure as Code (IaC) and deploying infrastructure across environments
  • Managing cloud infrastructure with a DevOps approach
  • Handling and transforming various data types (JSON, CSV, etc.) using Apache Spark, Databricks, or Hadoop
  • Understanding modern data system architectures (Data Warehouse, Data Lakes, Data Meshes) and their use cases
  • Creating data pipelines on cloud platforms with error handling and reusable libraries
  • Documenting and presenting end-to-end data processing system diagrams (C4, UML, etc.)
  • Implementing robust DevOps practices in data projects, including DataOps tools for orchestration, data integration, and analytics
  • Enhancing resilience through vulnerability checks and testing strategies (unit, integration, data quality)
  • Applying SOLID, DRY, and TDD principles practically
  • Agile methodologies such as Scrum, XP, and Kanban
  • Designing and implementing efficient batch and streaming data transformations at scale
  • Mentoring, team support, and line management skills
  • Commercial mindset to grow accounts organically with senior stakeholders

Experience in the following areas is desirable but not essential:

  • Working in a technology consultancy
  • Using Docker and virtual environments in CI/CD
  • Engaging with senior stakeholders for requirements gathering
  • Collaborating with engineers via pair or mob programming
  • Working with data scientists to productionize machine learning models
  • Knowledge of statistics
  • Collaborating across multidisciplinary teams
  • Experience within the public sector

Support in applying

If you need this job description in another format or require support in applying, please email .

We believe technology can improve public services and that diversity within our team enhances this mission. We encourage applicants from underrepresented groups to apply.

We are committed to accessibility and inclusion, offering adjustments for interview processes and welcoming feedback on our candidate experience.

We foster community through Slack channels and communities of practice, covering interests like music, food, pets, and professional development. If you'd like to connect with these groups, please contact a Made Tech talent team member.

Our benefits include flexible schemes like Smart Tech, Cycle to Work, and personalized benefit allowances. We promote connection through social and wellbeing events.

Our popular benefits:

30 days Holiday - paid leave plus bank holidays

Remote Working - part-time remote options

Paid counselling - mental health, legal, and financial advice

Candidates must be eligible for SC security clearance, requiring 5 years of UK residency. If eligibility is not confirmed during the process, we cannot proceed with your application.

Interested?

Join us in using technology to improve society. Our transparent and supportive hiring process guides candidates at each stage, with feedback provided throughout. Shortlisted candidates will be invited for screening. Register your interest to stay updated on relevant roles.


#J-18808-Ljbffr

Related Jobs

View all jobs

Senior Data Engineer

Senior Data Engineer

Senior Data Engineer

Senior Data Engineer

Senior Data Engineer - Energy

Senior Data Engineer, SQL, RDBMS, AWS, Python, Mainly Remote

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Are you considering a career change into machine learning in your 30s, 40s or 50s? You’re not alone. In the UK, organisations across industries such as finance, healthcare, retail, government & technology are investing in machine learning to improve decisions, automate processes & unlock new insights. But with all the hype, it can be hard to tell which roles are real job opportunities and which are just buzzwords. This article gives you a practical, UK-focused reality check: which machine learning roles truly exist, what skills employers really hire for, how long retraining realistically takes, how to position your experience and whether age matters in your favour or not. Whether you come from analytics, engineering, operations, research, compliance or business strategy, there is a credible route into machine learning if you approach it strategically.

How to Write a Machine Learning Job Ad That Attracts the Right People

Machine learning now sits at the heart of many UK organisations, powering everything from recommendation engines and fraud detection to forecasting, automation and decision support. As adoption grows, so does demand for skilled machine learning professionals. Yet many employers struggle to attract the right candidates. Machine learning job adverts often generate high volumes of applications, but few applicants have the blend of modelling skill, engineering awareness and real-world experience the role actually requires. Meanwhile, strong machine learning engineers and scientists quietly avoid adverts that feel vague, inflated or confused. In most cases, the issue is not the talent market — it is the job advert itself. Machine learning professionals are analytical, technically rigorous and highly selective. A poorly written job ad signals unclear expectations and low ML maturity. A well-written one signals credibility, focus and a serious approach to applied machine learning. This guide explains how to write a machine learning job ad that attracts the right people, improves applicant quality and strengthens your employer brand.

Maths for Machine Learning Jobs: The Only Topics You Actually Need (& How to Learn Them)

Machine learning job adverts in the UK love vague phrases like “strong maths” or “solid fundamentals”. That can make the whole field feel gatekept especially if you are a career changer or a student who has not touched maths since A level. Here is the practical truth. For most roles on MachineLearningJobs.co.uk such as Machine Learning Engineer, Applied Scientist, Data Scientist, NLP Engineer, Computer Vision Engineer or MLOps Engineer with modelling responsibilities the maths you actually use is concentrated in four areas: Linear algebra essentials (vectors, matrices, projections, PCA intuition) Probability & statistics (uncertainty, metrics, sampling, base rates) Calculus essentials (derivatives, chain rule, gradients, backprop intuition) Basic optimisation (loss functions, gradient descent, regularisation, tuning) If you can do those four things well you can build models, debug training, evaluate properly, explain trade-offs & sound credible in interviews. This guide gives you a clear scope plus a six-week learning plan, portfolio projects & resources so you can learn with momentum rather than drowning in theory.