Senior Data Analyst - Finance and Treasury

Wise
London
1 month ago
Create job alert

Company Description

Your Mission:

At Wise, we’ve got a clear mission — money without borders. Built by and for people who live global lives. As a FinTech company moving billions of GBP of customer money in over 70 countries, Wise needs bulletproof financials & insights into the growth of the company. We need timely, accurate and scalable financial data to make accurate business decisions inside the company.

Due to continued and rapid growth we’re on the hunt for a Senior Data Analyst to join our Growth and Strategic Finance Team in Shoreditch, London. You’ll be part of the team that helps pilot the rocket ship.

Job Description

What you’ll be doing:

Your principal responsibility will be to make an impact and lead us to better decisions for the company and our customers

Curating datasets, surfacing metrics, some statistical modelling, and deeper dive analysis that we expect to influence the direction of the team and the company

Depending on the project you’re working on, you’ll doing the following:

Helping us understand what’s driving our growth at a company level

Helping us analyse how we’re generating costs and helping our teams come up with strategic plans to drive them down (this is very central to our Mission) 

Helping us develop better pricing strategies so that we can incentivise the right behaviour internally, and also encourage our growth

Who you are:

4-7 years experience in similar roles

Mathematical background

Strong SQL skills

Python/R

Strong analytical ability

Decent understanding of stats and statistical modelling

Data visualisation and storytelling ability

Ability to self organise and manage stakeholders

Demonstration of impact/going above and beyond basic role requirements

Desirable

DBT

Data modelling in a warehouse context

Understanding of testing and experimental design

Legally authorised to work in the UK

Some important stuff we would like you to know

To meet our regulatory obligations as a licensed financial services company, Wise needs to conduct background checks on all new hires, which in the Finance team includes Criminal and Credit checks. Please discuss with the Recruiter if you have any concerns regarding this process.

What do we offer: 

Salary: £75,000 - £100,000

Key benefits:

Hybrid working 

Paid annual holiday, sick days, parental leave and other leave opportunities

6 weeks of paid sabbatical after 4 years at Wise on top of annual leave

Additional Information

For everyone, everywhere. We're people building money without borders — without judgement or prejudice, too. We believe teams are strongest when they are diverse, equitable and inclusive.

We're proud to have a truly international team, and we celebrate our differences.
Inclusive teams help us live our values and make sure every Wiser feels respected, empowered to contribute towards our mission and able to progress in their careers.

If you want to find out more about what it's like to work at Wise visit .

Keep up to date with life at Wise by following us on and .

Related Jobs

View all jobs

Senior Data Analyst

Senior Data Analyst

Senior Data Analyst

Senior Data Analyst

Senior Data Analyst

Senior Data Analyst

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Portfolio Projects That Get You Hired for Machine Learning Jobs (With Real GitHub Examples)

In today’s data-driven landscape, the field of machine learning (ML) is one of the most sought-after career paths. From startups to multinational enterprises, organisations are on the lookout for professionals who can develop and deploy ML models that drive impactful decisions. Whether you’re an aspiring data scientist, a seasoned researcher, or a machine learning engineer, one element can truly make your CV shine: a compelling portfolio. While your CV and cover letter detail your educational background and professional experiences, a portfolio reveals your practical know-how. The code you share, the projects you build, and your problem-solving process all help prospective employers ascertain if you’re the right fit for their team. But what kinds of portfolio projects stand out, and how can you showcase them effectively? This article provides the answers. We’ll look at: Why a machine learning portfolio is critical for impressing recruiters. How to select appropriate ML projects for your target roles. Inspirational GitHub examples that exemplify strong project structure and presentation. Tangible project ideas you can start immediately, from predictive modelling to computer vision. Best practices for showcasing your work on GitHub, personal websites, and beyond. Finally, we’ll share how you can leverage these projects to unlock opportunities—plus a handy link to upload your CV on Machine Learning Jobs when you’re ready to apply. Get ready to build a portfolio that underscores your skill set and positions you for the ML role you’ve been dreaming of!

Machine Learning Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

Machine learning is fuelling innovation across every industry, from healthcare to retail to financial services. As organisations look to harness large datasets and predictive algorithms to gain competitive advantages, the demand for skilled ML professionals continues to soar. Whether you’re aiming for a machine learning engineer role or a research scientist position, strong interview performance can open doors to dynamic projects and fulfilling careers. However, machine learning interviews differ from standard software engineering ones. Beyond coding proficiency, you’ll be tested on algorithms, mathematics, data manipulation, and applied problem-solving skills. Employers also expect you to discuss how to deploy models in production and maintain them effectively—touching on MLOps or advanced system design for scaling model inferences. In this guide, we’ve compiled 30 real coding & system‑design questions you might face in a machine learning job interview. From linear regression to distributed training strategies, these questions aim to test your depth of knowledge and practical know‑how. And if you’re ready to find your next ML opportunity in the UK, head to www.machinelearningjobs.co.uk—a prime location for the latest machine learning vacancies. Let’s dive in and gear up for success in your forthcoming interviews.

Negotiating Your Machine Learning Job Offer: Equity, Bonuses & Perks Explained

How to Secure a Compensation Package That Matches Your Technical Mastery and Strategic Influence in the UK’s ML Landscape Machine learning (ML) has rapidly shifted from an emerging discipline to a mission-critical function in modern enterprises. From optimising e-commerce recommendations to powering autonomous vehicles and driving innovation in healthcare, ML experts hold the keys to transformative outcomes. As a mid‑senior professional in this field, you’re not only crafting sophisticated algorithms; you’re often guiding strategic decisions about data pipelines, model deployment, and product direction. With such a powerful impact on business results, companies across the UK are going beyond standard salary structures to attract top ML talent. Negotiating a compensation package that truly reflects your value means looking beyond the numbers on your monthly payslip. In addition to a competitive base salary, you could be securing equity, performance-based bonuses, and perks that support your ongoing research, development, and growth. However, many mid‑senior ML professionals leave these additional benefits on the table—either because they’re unsure how to negotiate them or they simply underestimate their long-term worth. This guide explores every critical aspect of negotiating a machine learning job offer. Whether you’re joining an AI-focused start-up or a major tech player expanding its ML capabilities, understanding equity structures, bonus schemes, and strategic perks will help you lock in a package that matches your technical expertise and strategic influence. Let’s dive in.