Senior Data Analyst

Arqiva
united kingdom
2 months ago
Applications closed

Related Jobs

View all jobs

Senior Data Analyst

Senior Data Analyst

Senior Data Analyst

Senior Data Analyst

Senior Data Analyst - Internal Audit

Senior Data Analyst

Location: We operate a flexible, hybrid working environment with the candidate required to travel to either our Winchester or London office once or twice a week.

We offer 

Up to £60,000 base salary 6% pension contribution  Private Medical  25 days annual leave Access to our comprehensive flexible benefits including discounts on big brands, wellness and employee assistance programmes, gymflex, buy and sell annual leave, travel and dental insurance  Work. Life. Smarter. Our commitment to a flexible and hybrid working culture 

Overview 

Analyses datasets to derive actionable insights, trends, and reports, supporting data-driven decision-making. Cleans and prepares data, creates and manages BI dashboards, and provides ongoing performance analysis. Evaluates decision options using scenario analysis and collaborates with stakeholders to optimise business outcomes.

The role 

Lead data analytics projects to drive strategic decision-making Perform data extraction, cleaning, and analysis Develop and maintain reports, dashboards, and visualisations Collaborate with stakeholders to understand data needs Identify trends, patterns, and opportunities through analysis. Participate in data validation and quality initiatives Identify opportunities for process automation Act as a coach and SME for data analysis

The person 

Strong proficiency in SQL for data extraction, manipulation, and analysis, as well as proficiency in Python for statistical analysis Strong proficiency with data visualisation tools such as Tableau, QlikSense, or similar, including building dashboards for decision-makers Familiarity with data warehousing, ETL/ELT processes, and large-scale data platforms (Snowflake, Databricks Qualifications: A degree (or equivalent experience) in Computer Science, Mathematics, or a related field is advantageous

Skills

Communication Skills Analytical Thinking Data Analysis Data Modelling Data Visualisation Data Governance Problem Solving Continuous Improvement Agile Methodologies

Why join Arqiva? We are the undisputed leader in UK TV and radio broadcast, and the UK’s leading Smart utilities platform. This means we have a strong heritage and foundation for future growth for you to grow your career with us.

Our journey is to transition global media distribution to cloud solutions, where we aim to double our revenue and continue to grow by being an innovator of scalable solutions for new connectivity sectors. We have opportunities in new technology applications and products, you will have opportunities to learn and develop with us. 

Your wellbeing…. Our wellbeing mission is to help our people to be the best version of themselves at work and still have the time and energy to live a full life outside of work. 

Our focus for 2024 is to Win, Grow, Go Faster – find out more, contact us and apply!

Inclusive Arqiva ….Our networks include our Diversity Ambassadors, Eldercare, Spectrum, Working Families, Pride, Veterans and Inspiring Women – join and contribute to our active networks! 

#LI-KM1

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Rural-Remote Machine Learning Jobs: Finding Balance Beyond the Big Cities

Over the past decade, machine learning (ML) has transformed from a niche research domain into a pervasive technology underpinning everything from recommendation systems and voice assistants to financial forecasting and autonomous vehicles. Historically, the UK’s major tech hubs—particularly London—have been magnets for top ML talent and corporate headquarters. However, remote work has become mainstream, and many ML professionals are realising they can excel in their field while living far beyond the city limits. At MachineLearningJobs.co.uk, we’ve observed a growing interest in positions that allow for a rural lifestyle or a coastal environment, often reflected in search terms like “ML remote countryside” or “tech jobs by the sea.” This surge is no coincidence. Flexible work policies, better rural broadband, and the nature of machine learning tasks—much of which can be done through cloud platforms—are bringing new opportunities to those who wish to swap urban hustle for fresh air and scenic views. Whether you’re a data scientist, ML engineer, researcher, or product manager, a rural or seaside move could reinvigorate your work-life balance. In this article, we’ll unpack why rural-remote ML jobs are on the rise, how you can navigate the challenges of leaving the city, and what you need to do to thrive in a machine learning career beyond the M25. If you’ve dreamt of looking up from your laptop to rolling fields or ocean waves, keep reading—your rural ML role might be closer than you think.

Quantum-Enhanced Machine Learning—Propelling AI into the Next Frontier

Machine learning (ML) has revolutionised how we interpret data, build predictive models, and create intelligent applications. From recommendation engines and self-driving cars to advanced genomics and natural language processing, ML solutions are integral to nearly every corner of modern life. However, as data complexity and model size continue to skyrocket, the computational demands placed on ML systems grow in tandem—often pushing even high-performance classical computers to their limits. In recent years, quantum computing has emerged as a tantalising solution to these challenges. Unlike traditional digital systems, quantum computers exploit quantum mechanics—superposition and entanglement—to process information in ways that defy conventional logic. As these machines mature, they promise exponential speed-ups for certain tasks, potentially reshaping how we approach AI and data-intensive challenges. What does this mean for machine learning? Enter quantum-enhanced ML, a new frontier where quantum processors and classical ML frameworks unite to accelerate model training, tackle high-dimensional data, and solve complex optimisation tasks more efficiently. In this article, we will: Unpack the current state of machine learning, highlighting key bottlenecks. Provide a concise overview of quantum computing—why it’s radical and how it differs from classical technology. Examine potential breakthroughs in quantum-enhanced ML, including real-world use cases and technical approaches. Explore the roles and skill sets that will define this quantum-AI era, with guidance on how to prepare. Discuss the roadblocks (like hardware maturity and ethical concerns) and how they might be addressed in the years to come. If you’re a machine learning engineer, data scientist, or simply an AI enthusiast fascinated by the next wave of computational innovation, read on—quantum computing could become an integral part of your future toolkit, opening up job opportunities and reimagining what ML can achieve.

Machine Learning Jobs at Newly Funded UK Start-ups: Q3 2025 Investment Tracker

Machine learning (ML) has become the beating heart of modern tech innovation, powering breakthroughs in healthcare, finance, cybersecurity, robotics, and more. Across the United Kingdom, this surge in ML-driven solutions is fueling the success of countless start-ups—and spurring demand for talented machine learning engineers, data scientists, and related professionals. If you’re eager to join a high-growth ML company or simply want to keep tabs on the latest trends, this Q3 2025 Investment Tracker will guide you through the newly funded UK start-ups pushing the boundaries of ML. In this article, we’ll highlight key developments from Q3 2025, delve into the most promising newly funded ventures, and shed light on the machine learning roles they’re urgently seeking to fill. Plus, we’ll show you how to connect with these employers via MachineLearningJobs.co.uk, a dedicated platform for ML job seekers. Let’s dive in!