Senior Credit Risk Analyst - Consumer Lending / Loans

Birmingham
3 weeks ago
Create job alert

This rapidly expanding financial services company are seeking a Senior Credit Risk Analyst to join their Consumer Lending function. Working with the Commercial Director you will develop credit risk analytics / scorecard modelling solutions to enhance Credit Scoring & Lending decisioning to optimise and grow their loan portfolio

Client Details

Rapidly expanding financial services company

Description

This rapidly expanding financial services company are seeking a Senior Credit Risk Analyst to join their Consumer Lending function. Working with the Commercial Director you will develop credit risk analytics / scorecard modelling solutions to enhance Credit Scoring & Lending decisioning to optimise and grow their loan portfolio.

Key Responsibilities:

Developing and implementing advanced statistical / scorecard models to predict credit risk, optimise credit scoring, and enhance decision-making/underwriting processes.
Develop and maintain predictive models to assess credit risk and forecast customer behaviour.
Analyse large datasets to identify trends, patterns, and insights that inform business decisions.
Perform data cleaning to ensure high-quality data for analysis,
Conduct A/B testing and other experiments to evaluate the impact of credit strategies and policies.
Develop credit risk models, such as probability of default (PD) using various modelling techniques.
Working independently and presenting findings and recommendations to stakeholders in a clear and concise manner.Key Skills / Experience:

Experience in the Financial Services Industry (Essential)
Experience working with large data sets (Essential)
Proficiency in Python, R, SQL or other programming languages (Essential)
Proficiency in Excel (Essential)
Strong presentation skills, including the ability to translate complex data into understandable insight (Essential)
A great attention to detail and be process-oriented to review, suggest and implement improvements where appropriate. (Essential)
Able to work in a fast paced, changing environment.(Essential)
Degree in relevant subject (Data Science, Statistics, Computer Science, Economics or similar degree) (Preferable)
Experience using Salesforce and data visualisation tools (Preferable)Profile

Experience in the Financial Services Industry (Essential)
Experience working with large data sets (Essential)
Proficiency in Python, R, SQL or other programming languages (Essential)
Proficiency in Excel (Essential)
Strong presentation skills, including the ability to translate complex data into understandable insight (Essential)
A great attention to detail and be process-oriented to review, suggest and implement improvements where appropriate. (Essential)
Able to work in a fast paced, changing environment.(Essential)
Degree in relevant subject (Data Science, Statistics, Computer Science, Economics or similar degree) (Preferable)
Experience using Salesforce and data visualisation tools (Preferable)Job Offer

Opportunity to develop and enhance credit risk modelling & analytics strategy

Opportunity to join a rapidly expanding financial services company

Related Jobs

View all jobs

Senior Credit Risk Analyst

Senior Credit Risk Analyst - Consumer Lending / Loans

Senior Product Manager, Credit Platform London (Basé à London)

IFRS9 Modelling Specialist

Data Analyst (Audit)

Head of Risk - Alphagrep Global Capital | London, UK (Basé à London)

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Contract vs Permanent Machine Learning Jobs: Which Pays Better in 2025?

Machine learning (ML) has swiftly become one of the most transformative forces in the UK technology landscape. From conversational AI and autonomous vehicles to fraud detection and personalised recommendations, ML algorithms are reshaping how organisations operate and how consumers experience products and services. In response, job opportunities in machine learning—including roles in data science, MLOps, natural language processing (NLP), computer vision, and more—have risen dramatically. Yet, as the demand for ML expertise booms, professionals face a pivotal choice about how they want to work. Some choose day‑rate contracting, leveraging short-term projects for potentially higher immediate pay. Others embrace fixed-term contract (FTC) roles for mid-range stability, or permanent positions for comprehensive benefits and a well-defined career path. In this article, we will explore these different employment models, highlighting the pros and cons of each, offering sample take‑home pay scenarios, and providing insights into which path might pay better in 2025. Whether you’re a new graduate with a machine learning degree or an experienced practitioner pivoting into an ML-heavy role, understanding these options is key to making informed career decisions.

Machine‑Learning Jobs for Non‑Technical Professionals: Where Do You Fit In?

The Model Needs More Than Math When ChatGPT went viral and London start‑ups raised seed rounds around “foundation models,” many professionals asked, “Do I need to learn PyTorch to work in machine learning?” The answer is no. According to the Turing Institute’s UK ML Industry Survey 2024, 39 % of advertised ML roles focus on strategy, compliance, product or operations rather than writing code. As models move from proof‑of‑concept to production, demand surges for specialists who translate algorithms into business value, manage risk and drive adoption. This guide reveals the fastest‑growing non‑coding ML roles, the transferable skills you may already have, real transition stories and a 90‑day action plan—no gradient descent necessary.

Quantexa Machine‑Learning Jobs in 2025: Your Complete UK Guide to Joining the Decision‑Intelligence Revolution

Money‑laundering rings, sanctioned entities, synthetic identities—complex risks hide in plain sight inside data. Quantexa, a London‑born scale‑up now valued at US $2.2 bn (Series F, August 2024), solves that problem with contextual decision‑intelligence (DI): graph analytics, entity resolution and machine learning stitched into a single platform. Banks, insurers, telecoms and governments from HSBC to HMRC use Quantexa to spot fraud, combat financial crime and optimise customer engagement. With the launch of Quantexa AI Studio in February 2025—bringing generative AI co‑pilots and large‑scale Graph Neural Networks (GNNs) to the platform—the company is hiring at record pace. The Quantexa careers portal lists 450+ open roles worldwide, over 220 in the UK across data science, software engineering, ML Ops and client delivery. Whether you are a graduate data scientist fluent in Python, a Scala veteran who loves Spark or a solutions architect who can turn messy data into knowledge graphs, this guide explains how to land a Quantexa machine‑learning job in 2025.