Senior Bioinformatician

Wellcome Sanger Institute
Hinxton
8 months ago
Applications closed

Related Jobs

View all jobs

SENIOR DATA SCIENTIST - Computer Vision / Generative AI HYBRID

Senior Data Engineer - Remote Working

Senior Python Developer

Senior LLM Developer

Senior Data Analyst

Senior Go Developer

Do you want to help us improve human health and understand life on Earth? Make your mark by shaping the future to enable or deliver life-changing science to solve some of humanity’s greatest challenges.

About the Role

We are seeking a Senior Bioinformatician to support single-cell and spatial transcriptomic studies needed to train large-scale AI-based foundation models as part of a collaborative project with Open targets ( This role will aid multiple computational projects across the lab, focusing on curating large-scale cohorts of training data to train foundation models. The position involves working within an interdisciplinary team of life scientists, computer scientists, and ML scientists.

The post holder will maintain a key understanding of the research portfolio within the team and contribute to the development of innovative and creative data analysis strategies. They will also contribute to the development of the training pipeline and machine learning and artificial intelligence models. Additionally, they will have the opportunity to develop their skills in machine learning and AI models. Finally, they will be responsible for exploring opportunities to transition project-based analysis work into established scalable pipelines and advocate for open and reproducible science.

You will join an interdisciplinary team of life scientists, computer scientists, and mathematicians. We all learn from each other and work together in supporting Wellcome's mission to address worldwide health challenges. This is an exciting opportunity to work in single-cell and spatial genomics to understand how the immune system develops and maintains health.

Key responsibilities of the role:

  • Help generate and lead data analysis, and interpret large single-cell genomics data relating to the Human Cell Atlas research generated by the group, shared by collaborators and publicly available, including multi-omic and spatial datasets (e.g. scRNAseq, scATAC, 10x Genomics Visium and Xenium).
  • Implement innovative and creative data analysis strategies to aid in the pursuit of biological insights and clinical translation using single-cell research.
  • Work in a team to answer research questions formulated together with the members of Haniffa Lab, and with team members across the wider Institute as appropriate. Contribute to problem-solving discussions to solve complicated or multifaceted problems and generate novel ideas and new approaches.
  • Organise and keep track of developed codes and generated data within the group.
  • Feedback results to project leaders when required to achieve deadlines.
  • To prepare high-quality data reports and manuscripts to communicate results, including through publication and presentations at scientific meetings.
  • To take a full part in the general duties of the team, and to pass on skills and knowledge to other team members and visitors. To take part in wider Sanger Institute activities as appropriate.
About You

You are a bioinformatician with experience analysing genomic data and interpreting biological data. You are seeking a senior role that includes elements of statistical analysis, data analysis and pipeline engineering. You are a highly detail-oriented problem solver and are eager to learn and develop in the areas in which you have less experience. Teamwork and collaboration are essential aspects of this role, and you will be enthusiastic about creating effective and productive working relationships with collaborators both within and outside the organisation.

You will be supported in your personal and professional development and have the opportunity to lead peer-reviewed publications on genetics and genomics approaches.

Essential Skills
  • MSC or PhD in a relevant quantitative discipline (e.g. Computational Biology, Genetics, Bioinformatics, Physics, Engineering or Applied Statistics/Mathematics); or equivalent working experience in Bioinformatics or a related discipline
  • Experience programming in high-level scripting languages (Preferably Python and/or R), and the Unix Shell
  • Understanding and some experience in the fields of genomics, data processing and high-throughput data analysis
  • Experience in single-cell genomics data analysis and integration, e.g. scRNAseq, scATAC (desirable)
  • Experience developing statistical/machine-learning methods for the analysis of large-scale biological datasets, particularly Gaussian processes, neural networks and deep generative models (desirable)
  • Extensive experience in a research environment with an established track record of productivity through publications, or writing reports in the industry
  • Enthusiastic, proactive attitude and desire to learn
  • Strong communication skills to allow efficient interactions with team members
  • Commitment, problem-solving skills and attention to detail
  • Ability to organise own workload and manage competing priorities
  • Ability to summarise complex information and present to a wide variety of audiences in a concise and logical manner
  • Demonstrates inclusivity and respect for all

Relevant publication of the groups:

  • Lotfollahi, M., Naghipourfar, M., Luecken, M. D., Khajavi, M., Büttner, M., Wagenstetter, M., Avsec, Ž., Gayoso, A., Yosef, N., Interlandi, M. & Others. Mapping single-cell data to reference atlases by transfer learning.Nature Biotechnology1–10 .
  • Lotfollahi, M., Wolf, F. A. & Theis, F. J. scGen predicts single-cell perturbation responses.Nature Methods16, 715–721 .
  • Lotfollahi, M., Rybakov, S., Hrovatin, K., Hediyeh-Zadeh, S., Talavera-López, C., Misharin, A. V. & Theis, F. J. Biologically informed deep learning to query gene programs in single cell atlases.Nature Cell Biology .

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Job-Hunting During Economic Uncertainty: Machine Learning Edition

Machine learning (ML) has firmly established itself as a crucial part of modern technology, powering everything from personalised recommendations and fraud detection to advanced robotics and predictive maintenance. Both start-ups and multinational corporations depend on machine learning engineers and data experts to gain a competitive edge via data-driven insights and automation. However, even this high-demand sector can experience a downturn when broader economic forces—such as global recessions, wavering investor confidence, or unforeseen financial events—lead to more selective hiring, stricter budgets, and lengthier recruitment cycles. For ML professionals, the result can be fewer available positions, more rivals applying for each role, or narrower project scopes. Nevertheless, the paradox is that organisations still require skilled ML practitioners to optimise operations, explore new revenue channels, and cope with fast-changing market conditions. This guide aims to help you adjust your job-hunting tactics to these challenges, so you can still secure a fulfilling position despite uncertain economic headwinds. We will cover: How market volatility influences machine learning recruitment and your subsequent steps. Effective strategies to distinguish yourself when the field becomes more discerning. Ways to showcase your technical and interpersonal skills with tangible business impact. Methods for maintaining morale and momentum throughout potentially protracted hiring processes. How www.machinelearningjobs.co.uk can direct you towards the right opportunities in machine learning. By sharpening your professional profile, aligning your abilities with in-demand areas, and engaging with a focused ML community, you can position yourself for success—even in challenging financial conditions.

How to Achieve Work-Life Balance in Machine Learning Jobs: Realistic Strategies and Mental Health Tips

Machine Learning (ML) has become a cornerstone of modern innovation, powering everything from personalised recommendation engines and chatbots to autonomous vehicles and advanced data analytics. With numerous industries integrating ML into their core operations, the demand for skilled professionals—such as ML engineers, research scientists, and data strategists—continues to surge. High salaries, cutting-edge projects, and rapid professional growth attract talent in droves, creating a vibrant yet intensely competitive sector. But the dynamism of this field can cut both ways. Along with fulfilling opportunities comes the pressure of tight deadlines, complex problem-solving, continuous learning curves, and high-stakes project deliverables. It’s a setting where many professionals ask themselves, “Is true work-life balance even possible?” When new algorithms emerge daily and stakeholder expectations soar, the line between healthy dedication and perpetual overwork can become alarmingly thin. This comprehensive guide aims to shed light on how to achieve a healthy work-life balance in Machine Learning roles. We’ll discuss the distinctive pressures ML professionals face, realistic approaches to managing workloads, strategies for safeguarding mental health, and how boundary-setting can be the difference between sustained career growth and burnout. Whether you’re just getting started or have been at the forefront of ML for years, these insights will empower you to excel without sacrificing your well-being.

Transitioning from Academia to the Machine Learning Industry: How PhDs and Researchers Can Thrive in Commercial ML Settings

Machine learning (ML) has rapidly evolved from an academic discipline into a cornerstone of commercial innovation. From personalising online content to accelerating drug discovery, machine learning technologies permeate nearly every sector, creating exciting career avenues for talented researchers. If you’re a PhD or academic scientist thinking about leaping into this dynamic field, you’re not alone. Companies are eager to recruit professionals with a strong foundation in algorithms, statistical methods, and domain-specific knowledge to build the intelligent products of tomorrow. This article explores the essential steps academics can take to transition into industry roles in machine learning. We’ll discuss the differences between academic and commercial research, the skill sets most in demand, and how to optimise your CV and interview strategy. You’ll also find tips on networking, developing a commercial mindset, and navigating common challenges as you pivot your career from the halls of academia to the ML-driven tech sector.