Senior Bioinformatics Data Engineer

Singular: Building Brilliant Biotechs
Oxford
2 days ago
Create job alert

Senior Bioinformatics Data Engineer


Are you a data engineer passionate about turning large-scale genomic data into actionable biological insight? Join a cutting-edge biotech at the forefront of functional genomics and therapeutic discovery.


THE COMPANY

This pioneering Oxford-based biotech is unlocking the non-coding genome to understand the root causes of human disease and enable new therapeutic targets. Combining high-throughput functional genomics with advanced computation and machine learning, the company’s platform integrates vast, complex datasets to drive precision drug discovery.

As part of a cross-disciplinary Computational team, you’ll help expand and scale the data infrastructure that powers these discoveries, working at the interface of bioinformatics, data engineering, and software development.


THE ROLE

As Senior Bioinformatics Data Engineer, you will design, build, and maintain robust data systems that manage the flow of large-scale functional genomics data from raw, unstructured lab outputs to structured, accessible datasets used for analysis and decision-making. You’ll collaborate with bioinformaticians, machine learning specialists, and software engineers to ensure scalability, reliability, and performance across the entire data ecosystem.


Key Responsibilities:

  • Develop and manage core data infrastructure enabling automated data flows from lab data to analytics-ready formats.
  • Build and optimise scalable biological data processing pipelines (Nextflow, Seqera).
  • Maintain and develop cloud-based infrastructure with high uptime, failsafes, and modern DevOps/DataOps practices.
  • Implement data modelling solutions across relational and non-relational databases (PostgreSQL, Elasticsearch).


ABOUT YOU

You’ll thrive in this role if you have:

  • Industry experience within biotech, pharma, or large-scale computational research.
  • Expertise using Dagster and Nextflow.
  • Experience designing and implementing scalable data pipelines for biological data.


This role can be hybrid or remote with monthly office commitments.


If you’re ready to shape the data backbone of a platform redefining genomic discovery, apply now!


I look forward to hearing from you!

Related Jobs

View all jobs

Senior Data Scientist - Drug Discovery

Senior Data Scientist - Drug Discovery

Senior Data Scientist - Drug Discovery

Senior Data Scientist - Drug Discovery

Senior Data Scientist - Drug Discovery

Senior Data Scientist - Drug Discovery

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Neurodiversity in Machine Learning Careers: Turning Different Thinking into a Superpower

Machine learning is about more than just models & metrics. It’s about spotting patterns others miss, asking better questions, challenging assumptions & building systems that work reliably in the real world. That makes it a natural home for many neurodivergent people. If you live with ADHD, autism or dyslexia, you may have been told your brain is “too distracted”, “too literal” or “too disorganised” for a technical career. In reality, many of the traits that can make school or traditional offices hard are exactly the traits that make for excellent ML engineers, applied scientists & MLOps specialists. This guide is written for neurodivergent ML job seekers in the UK. We’ll explore: What neurodiversity means in a machine learning context How ADHD, autism & dyslexia strengths map to ML roles Practical workplace adjustments you can ask for under UK law How to talk about neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in ML – & how to turn “different thinking” into a genuine career advantage.

Machine Learning Hiring Trends 2026: What to Watch Out For (For Job Seekers & Recruiters)

As we move into 2026, the machine learning jobs market in the UK is going through another big shift. Foundation models and generative AI are everywhere, companies are under pressure to show real ROI from AI, and cloud costs are being scrutinised like never before. Some organisations are slowing hiring or merging teams. Others are doubling down on machine learning, MLOps and AI platform engineering to stay competitive. The end result? Fewer fluffy “AI” roles, more focused machine learning roles with clear ownership and expectations. Whether you are a machine learning job seeker planning your next move, or a recruiter trying to build ML teams, understanding the key machine learning hiring trends for 2026 will help you stay ahead.

Machine Learning Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK machine learning hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise shipped ML/LLM features, robust evaluation, observability, safety/governance, cost control and measurable business impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for ML engineers, applied scientists, LLM application engineers, ML platform/MLOps engineers and AI product managers. Who this is for: ML engineers, applied ML/LLM engineers, LLM/retrieval engineers, ML platform/MLOps/SRE, data scientists transitioning to production ML, AI product managers & tech‑lead candidates targeting roles in the UK.