Senior Backend Engineer - Data Engineer

St James's
3 weeks ago
Create job alert

Our Energy client seeks a Senior Backend Engineer - Data Engineer to join their team in Mayfair, London.

We are looking for a Senior Backend Software Engineer with strong data engineering skills to join a small, agile team developing software solutions for our energy supply and trading functions.

Hybrid working is in play, with 3 days in the office and 2 days at home.

Senior Backend Engineer - Data Engineer - About the role:

My client’s energy business is growing rapidly with a strong focus on using advanced data systems and analytics to deliver exceptional service. We are looking for someone to take ownership of the backend architecture that underpins our analytics applications, user tools, and automated trading workflows.

You will collaborate closely with analysts, data scientists, and business stakeholders to translate requirements into robust, scalable backend solutions. You’ll be responsible for designing and developing services, APIs, data pipelines, and internal applications that integrate analytics and enable better decision-making and operational efficiency.

This is a hands-on role for someone who thrives in a fast-paced, build-first culture without multiple tiers of management. You should be excited to take full ownership of backend development, lead on best practices, and coach others in a collaborative, delivery-focused team.

Experience in retail or wholesale electricity and gas markets is helpful, but a willingness to become an expert in this field is essential. Our success is based on understanding the subject matter from first principles.

Senior Backend Engineer - Data Engineer - Key Responsibilities:

  • Architect, design, develop and maintain backend systems for analytics-driven applications, user tools, and automation workflows.

  • Build and manage APIs and internal services using Python (FastAPI, Flask) and cloud-native tooling.

  • Develop and manage data pipelines, backend components, and supporting infrastructure.

  • Manage server resources and backend processing environments to ensure reliability and scalability.

  • Monitor and maintain application performance, availability, and data quality across production systems.

  • Implement and maintain CI/CD pipelines, testing frameworks, and DevOps practices to enable robust delivery.

  • Write, test, and document code in line with quality standards and engineering best practices.

  • Collaborate with operations, analytics and commercial teams to gather requirements and translate them into scalable technical solutions.

  • Support analysts and data scientists in deploying and operationalising analytics tools and models.

  • Lead or support the data engineering team, help structure development workflows, and mentor junior team members.

  • Stay current with technological advancements and promote a culture of continuous improvement.

  • Present technical solutions to stakeholders and train non-technical users on tools and workflows.

    Senior Backend Engineer - Data Engineer - Skills Required:

  • Python (FastAPI, Flask)

  • REST API development

  • Containerisation: Docker, Kubernetes

  • CI/CD: Azure DevOps, GitHub Actions

  • Software testing and documentation practices

  • SQL, PySpark, Databricks

  • Relational databases and data lake architecture

  • Model and data pipeline integration (e.g. MLflow)

  • Streamlit or other lightweight UI frameworks

  • Microsoft Azure (Functions, Storage, Compute)

  • Monitoring tools (Grafana, Prometheus, etc.)

  • Performance optimisation and resource management

  • Agile delivery practices (Jira, Azure Boards, etc.)

  • Strong communication with technical and business teams

  • Mentoring and knowledge sharing within the team

    Desirable Skills:

  • Experience in energy supply or trading

  • Familiarity with dbt or modular analytics tooling

  • Exposure to forecasting or optimisation workflows

  • Knowledge of React or frontend tools for internal apps

  • Networking or IoT integration experience

    What they offer:

  • A high-autonomy role in a flat, delivery-focused team

  • Ownership of backend systems for real-time analytics and automation

  • A fast-moving, hands-on culture with meaningful technical challenges

  • The opportunity to apply software and data engineering to real-world energy problems

Related Jobs

View all jobs

Senior Backend Engineer - Data Engineer

Mid/Senior Backend Engineer (Node.js & TS)

Software Engineer

AWS Backend Engineer (Inside IR35)

Staff Engineer (ML-Native / Software Engineering)

Senior Software Engineer - AI & Machine Learning

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Jobs in the Public Sector: Opportunities Across GDS, NHS, MOD, and More

Machine learning (ML) has rapidly moved from academic research labs to the heart of industrial and governmental operations. Its ability to uncover patterns, predict outcomes, and automate complex tasks has revolutionised industries ranging from finance to retail. Now, the public sector—encompassing government departments, healthcare systems, and defence agencies—has become an increasingly fertile ground for machine learning jobs. Why? Because government bodies oversee vast datasets, manage critical services for millions of citizens, and must operate efficiently under tight resource constraints. From using ML algorithms to improve patient outcomes in the NHS, to enhancing cybersecurity within the Ministry of Defence (MOD), there’s a growing demand for skilled ML professionals in UK public sector roles. If you’re passionate about harnessing data-driven insights to solve large-scale problems and contribute to societal well-being, machine learning jobs in the public sector offer an unparalleled blend of challenge and impact. In this article, we’ll explore the key reasons behind the public sector’s investment in ML, highlight the leading organisations, outline common job roles, and provide practical guidance on securing a machine learning position that helps shape the future of government services.

Contract vs Permanent Machine Learning Jobs: Which Pays Better in 2025?

Machine learning (ML) has swiftly become one of the most transformative forces in the UK technology landscape. From conversational AI and autonomous vehicles to fraud detection and personalised recommendations, ML algorithms are reshaping how organisations operate and how consumers experience products and services. In response, job opportunities in machine learning—including roles in data science, MLOps, natural language processing (NLP), computer vision, and more—have risen dramatically. Yet, as the demand for ML expertise booms, professionals face a pivotal choice about how they want to work. Some choose day‑rate contracting, leveraging short-term projects for potentially higher immediate pay. Others embrace fixed-term contract (FTC) roles for mid-range stability, or permanent positions for comprehensive benefits and a well-defined career path. In this article, we will explore these different employment models, highlighting the pros and cons of each, offering sample take‑home pay scenarios, and providing insights into which path might pay better in 2025. Whether you’re a new graduate with a machine learning degree or an experienced practitioner pivoting into an ML-heavy role, understanding these options is key to making informed career decisions.

Machine‑Learning Jobs for Non‑Technical Professionals: Where Do You Fit In?

The Model Needs More Than Math When ChatGPT went viral and London start‑ups raised seed rounds around “foundation models,” many professionals asked, “Do I need to learn PyTorch to work in machine learning?” The answer is no. According to the Turing Institute’s UK ML Industry Survey 2024, 39 % of advertised ML roles focus on strategy, compliance, product or operations rather than writing code. As models move from proof‑of‑concept to production, demand surges for specialists who translate algorithms into business value, manage risk and drive adoption. This guide reveals the fastest‑growing non‑coding ML roles, the transferable skills you may already have, real transition stories and a 90‑day action plan—no gradient descent necessary.