Senior MLops (Full Stack) Engineer | London | Foundation Models

Latchmere
2 weeks ago
Create job alert

Senior MLops (Full Stack) Engineer | London | Foundation Models

What you’ll do
Build and maintain APIs (FastAPI or similar) to serve ML models
Design and manage robust ML infrastructure using Kubernetes, Docker, and Terraform
Deploy machine learning models into production and optimize them for performance
Collaborate with ML teams to streamline training, deployment, and monitoring
Build internal tools and dashboards (e.g., in React or Vue) for analytics and observability
Own CI/CD pipelines and drive infrastructure automationWhat you’ll bring
5+ years’ experience in backend or infrastructure-focused engineering roles
Strong Python and API development skills (FastAPI, Flask, etc.)
Proven experience with model deployment, containerization, and orchestration (K8s, Docker)
Infrastructure-as-code experience (Terraform, Helm, etc.)
Familiarity with cloud platforms like AWS, GCP, or Azure
Bonus: Frontend experience (React, Vue.js) for building internal tools
Why Join Us?

🌍 Tackle the biggest challenge in AI – Be part of the mission to bend the curve on compute costs, energy waste, and emissions in the LLM arms race. Our optimiser is redefining how the world trains and serves large models.
🧠 Work on the frontier – You’ll engineer the infrastructure behind cutting-edge AI systems — pushing the boundaries of speed, efficiency, and scale with a team that lives at the intersection of ML, systems, and optimisation research.
🚀 High-impact, high-autonomy – We’re a lean, expert-led team where your work ships fast, matters deeply, and scales globally. Expect ownership, speed, and the freedom to build without bureaucratic drag.
💥 Foundation model as infra – Our optimiser is itself a foundation model. You’ll help serve, adapt, and scale it in the wild — an opportunity few engineers will ever get.
💸 Equity that means something – You’re not late to the party. Join at a time when your equity still reflects the upside you help create.u

Related Jobs

View all jobs

Senior MLops (Full Stack) Engineer | London | Foundation Models

Senior Data Scientist (MLOps)

MLOps Engineer (UKIC DV Cleared)

Senior Machine Learning Engineer

Senior Data Scientist (GenAI)

Senior Data Engineer - Databricks

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Quantum-Enhanced Machine Learning—Propelling AI into the Next Frontier

Machine learning (ML) has revolutionised how we interpret data, build predictive models, and create intelligent applications. From recommendation engines and self-driving cars to advanced genomics and natural language processing, ML solutions are integral to nearly every corner of modern life. However, as data complexity and model size continue to skyrocket, the computational demands placed on ML systems grow in tandem—often pushing even high-performance classical computers to their limits. In recent years, quantum computing has emerged as a tantalising solution to these challenges. Unlike traditional digital systems, quantum computers exploit quantum mechanics—superposition and entanglement—to process information in ways that defy conventional logic. As these machines mature, they promise exponential speed-ups for certain tasks, potentially reshaping how we approach AI and data-intensive challenges. What does this mean for machine learning? Enter quantum-enhanced ML, a new frontier where quantum processors and classical ML frameworks unite to accelerate model training, tackle high-dimensional data, and solve complex optimisation tasks more efficiently. In this article, we will: Unpack the current state of machine learning, highlighting key bottlenecks. Provide a concise overview of quantum computing—why it’s radical and how it differs from classical technology. Examine potential breakthroughs in quantum-enhanced ML, including real-world use cases and technical approaches. Explore the roles and skill sets that will define this quantum-AI era, with guidance on how to prepare. Discuss the roadblocks (like hardware maturity and ethical concerns) and how they might be addressed in the years to come. If you’re a machine learning engineer, data scientist, or simply an AI enthusiast fascinated by the next wave of computational innovation, read on—quantum computing could become an integral part of your future toolkit, opening up job opportunities and reimagining what ML can achieve.

Machine Learning Jobs at Newly Funded UK Start-ups: Q3 2025 Investment Tracker

Machine learning (ML) has become the beating heart of modern tech innovation, powering breakthroughs in healthcare, finance, cybersecurity, robotics, and more. Across the United Kingdom, this surge in ML-driven solutions is fueling the success of countless start-ups—and spurring demand for talented machine learning engineers, data scientists, and related professionals. If you’re eager to join a high-growth ML company or simply want to keep tabs on the latest trends, this Q3 2025 Investment Tracker will guide you through the newly funded UK start-ups pushing the boundaries of ML. In this article, we’ll highlight key developments from Q3 2025, delve into the most promising newly funded ventures, and shed light on the machine learning roles they’re urgently seeking to fill. Plus, we’ll show you how to connect with these employers via MachineLearningJobs.co.uk, a dedicated platform for ML job seekers. Let’s dive in!

Portfolio Projects That Get You Hired for Machine Learning Jobs (With Real GitHub Examples)

In today’s data-driven landscape, the field of machine learning (ML) is one of the most sought-after career paths. From startups to multinational enterprises, organisations are on the lookout for professionals who can develop and deploy ML models that drive impactful decisions. Whether you’re an aspiring data scientist, a seasoned researcher, or a machine learning engineer, one element can truly make your CV shine: a compelling portfolio. While your CV and cover letter detail your educational background and professional experiences, a portfolio reveals your practical know-how. The code you share, the projects you build, and your problem-solving process all help prospective employers ascertain if you’re the right fit for their team. But what kinds of portfolio projects stand out, and how can you showcase them effectively? This article provides the answers. We’ll look at: Why a machine learning portfolio is critical for impressing recruiters. How to select appropriate ML projects for your target roles. Inspirational GitHub examples that exemplify strong project structure and presentation. Tangible project ideas you can start immediately, from predictive modelling to computer vision. Best practices for showcasing your work on GitHub, personal websites, and beyond. Finally, we’ll share how you can leverage these projects to unlock opportunities—plus a handy link to upload your CV on Machine Learning Jobs when you’re ready to apply. Get ready to build a portfolio that underscores your skill set and positions you for the ML role you’ve been dreaming of!