Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Security Engineer III - Data Engineer

JPMorganChase
Bournemouth
5 days ago
Create job alert
Overview

Join to apply for the Security Engineer III - Data Engineer role at JPMorganChase

As a Data Engineer at JPMorgan Chase within the Cybersecurity and Technology Controls, you''ll leverage your skills to develop and implement robust data solutions using cutting-edge technologies. You''ll play a critical role in analyzing complex data structures, ensuring data accuracy, and enhancing our security analytics capabilities. Collaborate with cross-functional teams to drive innovation, implement scalable solutions, and protect our digital assets. Your contributions will be pivotal in shaping the future of cybersecurity, fostering a culture of excellence, and ensuring the integrity and security of our data infrastructure.

Responsibilities
  • Design and implement complex, scalable solutions to efficiently process large volumes of data, ensuring consistent and timely delivery and availability.
  • Troubleshoot and resolve complex issues related to data architecture, including data ingestion, indexing, and search performance.
  • Create reusable frameworks with a strong emphasis on quality and long-term sustainability.
  • Collaborate with key partners to enhance understanding of data usage within the business.
  • Serve as a subject matter expert on the content and application of data in the product and related business areas.
  • Integrate data from multiple sources, including structured, semi-structured, and unstructured data.
  • Implement data quality checks and validation processes to ensure the accuracy, completeness, and consistency of the data.
  • Analyze complex data structures from various security data sources and scale data engineering pipelines.
  • Perform all Data Engineering job activities, including ELT project development, testing, and deployment activities.
  • Document data engineering processes, workflows, and systems for reference and knowledge-sharing purposes.
  • Add to team culture of diversity, opportunity, inclusion, and respect.
Required Qualifications, Capabilities, And Skills
  • Formal training or certification on SQL concepts and proficient applied experience.
  • Proficient in database management, with experience in both relational databases (SQL) and NoSQL databases.
  • Experience with Python and SQL.
  • Expertise in Python and Java development.
  • Extensive experience with Big Data technologies, including Spark, Hive, Redshift, Kafka, and others.
  • Strong understanding of ETL/ELT frameworks and tools, including DBT, Apache Airflow, Trino, Kestra, or similar technologies.
  • Hands-on experience in data pipelines and ETL/ELT processes using Python and SQL.
  • Experience with Kafka data streaming or other streaming/messaging services like Kinesis, SNS, SQS.
  • Demonstrated experience developing, debugging, and tuning complex SQL statements.
  • Experience working on real-time and streaming applications.
  • Exceptional understanding of distributed systems and cloud platforms.
  • Skilled in working with data streaming platforms such as Apache Flink and Apache Kafka.
  • Expertise in performing data transformations to enhance data quality and usability.
  • Comprehensive knowledge of the Software Development Life Cycle.
  • Solid grasp of agile methodologies, including CI/CD, application resiliency, and security best practices.
Preferred Qualifications, Capabilities, And Skills
  • Relevant industry experience, preferably in a data engineering role focused on threat detection and security analytics.
  • Experience with advanced data streaming and transformation tools.
  • Experience with Kubernetes for container orchestration is a plus.
  • Experience onboarding datasets to Splunk, ensuring CIM compliance.
  • Be a team player and work collaboratively with team members.
About Us

J.P. Morgan is a global leader in financial services, providing strategic advice and products to the world’s most prominent corporations, governments, wealthy individuals and institutional investors. Our first-class business in a first-class way approach to serving clients drives everything we do. We strive to build trusted, long-term partnerships to help our clients achieve their business objectives.

We recognize that our people are our strength and the diverse talents they bring to our global workforce are directly linked to our success. We are an equal opportunity employer and place a high value on diversity and inclusion at our company. We do not discriminate on the basis of any protected attribute, including race, religion, color, national origin, gender, sexual orientation, gender identity, gender expression, age, marital or veteran status, pregnancy or disability, or any other basis protected under applicable law. We also make reasonable accommodations for applicants’ and employees’ religious practices and beliefs, as well as mental health or physical disability needs.

Seniority level
  • Not Applicable
Employment type
  • Full-time
Job function
  • Information Technology

Location: Bournemouth, England, United Kingdom


#J-18808-Ljbffr

Related Jobs

View all jobs

Security Engineer III - Data Engineering

Security Engineer III - Data Engineering

Security Engineer III - Data Engineer

GIS Data Engineer Security Cleared

ArcSight Data Engineer (DV Security Clearance)

Data Engineer

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK machine learning hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise shipped ML/LLM features, robust evaluation, observability, safety/governance, cost control and measurable business impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for ML engineers, applied scientists, LLM application engineers, ML platform/MLOps engineers and AI product managers. Who this is for: ML engineers, applied ML/LLM engineers, LLM/retrieval engineers, ML platform/MLOps/SRE, data scientists transitioning to production ML, AI product managers & tech‑lead candidates targeting roles in the UK.

Why Machine Learning Careers in the UK Are Becoming More Multidisciplinary

Machine learning (ML) has moved from research labs into mainstream UK businesses. From healthcare diagnostics to fraud detection, autonomous vehicles to recommendation engines, ML underpins critical services and consumer experiences. But the skillset required of today’s machine learning professionals is no longer purely technical. Employers increasingly seek multidisciplinary expertise: not only coding, algorithms & statistics, but also knowledge of law, ethics, psychology, linguistics & design. This article explores why UK machine learning careers are becoming more multidisciplinary, how these fields intersect with ML roles, and what both job-seekers & employers need to understand to succeed in a rapidly changing landscape.

Machine Learning Team Structures Explained: Who Does What in a Modern Machine Learning Department

Machine learning is now central to many advanced data-driven products and services across the UK. Whether you work in finance, healthcare, retail, autonomous vehicles, recommendation systems, robotics, or consumer applications, there’s a need for dedicated machine learning teams that can deliver models into production, maintain them, keep them secure, efficient, fair, and aligned with business objectives. If you’re hiring for or applying to ML roles via MachineLearningJobs.co.uk, this article will help you understand what roles are typically present in a mature machine learning department, how they collaborate through project lifecycles, what skills and qualifications UK employers look for, what the career paths and salaries are, current trends and challenges, and how to build an effective ML team.