Research Led Start Up Recruiting Machine Learning Researcher

Eka Finance
London
1 year ago
Applications closed

Related Jobs

View all jobs

Senior Data Analyst

Data Analyst

Research Manager (Analytics/Data Science)

Research Manager (Analytics/Data Science)

Technical Program Manager - Machine Learning - New York

Senior Data Science & ML Researcher – R&D Leader (Manchester)

T Posted byRecruiterResearch Led, Start Up focusing on behavioural learning and simulation in virtual environments is looking to recruit a Machine Learning Researcher.

Role:-

You will start off by applying your machine learning skills to research , develop and deploy systematic strategies . You will work very closely with the senior quant traders on the team . You will work alongside members whoe from internetpanies, leading technology names and academia.

Requirements:-

You must have a PhD in Machine Learning or a field that is closely related..

You should have deep research experience in predictive modelling , clustering , time series, machine learning , NLP etc .

Your experience can be from any Industry.

You will need to demonstrate a passion for the application of ML to trading the financial markets ,

Coding skills in C++/ Python/ Java.

You should have the ability to solve theoretical and practical machine learning problems .

Apply:-

Job ID SH

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

What Hiring Managers Look for First in Machine Learning Job Applications (UK Guide)

Whether you’re applying for machine learning engineer, applied scientist, research scientist, ML Ops or data scientist roles, hiring managers scan applications quickly — often making decisions before they’ve read beyond the top third of your CV. In the competitive UK market, it’s not enough to list skills. You must send clear signals of relevance, delivery, impact, reasoning and readiness for production — and do it within the first few lines of your CV or portfolio. This guide walks you through exactly what hiring managers look for first in machine learning applications, how they evaluate CVs and portfolios, and what you can do to improve your chances of getting shortlisted at every stage — from your CV and LinkedIn profile to your cover letter and project portfolio.

MLOps Jobs in the UK: The Complete Career Guide for Machine Learning Professionals

Machine learning has moved from experimentation to production at scale. As a result, MLOps jobs have become some of the most in-demand and best-paid roles in the UK tech market. For job seekers with experience in machine learning, data science, software engineering or cloud infrastructure, MLOps represents a powerful career pivot or progression. This guide is designed to help you understand what MLOps roles involve, which skills employers are hiring for, how to transition into MLOps, salary expectations in the UK, and how to land your next role using specialist platforms like MachineLearningJobs.co.uk.

The Skills Gap in Machine Learning Jobs: What Universities Aren’t Teaching

Machine learning has moved from academic research into the core of modern business. From recommendation engines and fraud detection to medical imaging, autonomous systems and language models, machine learning now underpins many of the UK’s most critical technologies. Universities have responded quickly. Machine learning modules are now standard in computer science degrees, specialist MSc programmes have proliferated, and online courses promise to fast-track careers in the field. And yet, despite this growth in education, UK employers consistently report the same problem: Many candidates with machine learning qualifications are not job-ready. Roles remain open for months. Interview processes filter out large numbers of applicants. Graduates with strong theoretical knowledge struggle when faced with practical tasks. The issue is not intelligence or effort. It is a persistent skills gap between university-level machine learning education and real-world machine learning jobs. This article explores that gap in depth: what universities teach well, what they routinely miss, why the gap exists, what employers actually want, and how jobseekers can bridge the divide to build successful careers in machine learning.